• 「HNOI2013」游走


    题目链接

    问题分析

    发现边经过的次数实际上就是点经过的次数乘上概率。那么问题就变成了求每个点经过的次数。

    把无向边拆成两条有向边,然后把点 (n) 的所有出边都删掉。然后高斯消元即可。每个点经过的次数就是可以走到它的点的次数乘上概率之和。当然点 (1) 要额外加 (1) ,因为一开始是在点 (1)

    参考程序

    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    
    #define Maxn 510
    #define Eps 1e-12
    int n, m, Map[Maxn][Maxn], Sz[Maxn], Id[Maxn * Maxn];
    double A[Maxn][Maxn], Times[Maxn * Maxn];
    
    inline int Cmp(double x, double y) {
    	if (fabs(x - y) < Eps) return 0;
    	if (x - y > Eps) return -1; else return 1;
    }
    
    inline void Gauss() {
    	for (int i = 1; i <= n; ++i) {
    		for (int j = i; j <= n; ++j)
    			if (Cmp(A[i][j], 0) != 0) {
    				for (int k = 1; k <= n + 1; ++k)
    					std::swap(A[i][k], A[j][k]);
    				break;
    			}
    		double Tmp = A[i][i];
    		for (int j = 1; j <= n + 1; ++j) A[i][j] /= Tmp;
    		for (int j = 1; j <= n; ++j) {
    			if (i == j) continue;
    			Tmp = A[j][i];
    			for (int k = 1; k <= n + 1; ++k)
    				A[j][k] -= Tmp * A[i][k];
    		}
    	}
    	return;
    }
    
    int main() {
    	scanf("%d%d", &n, &m);
    	for (int i = 1, x, y; i <= m; ++i) {
    		scanf("%d%d", &x, &y);
    		++Sz[x]; Map[x][y] = i;
    		++Sz[y]; Map[y][x] = i;
    	}
    	for (int i = 1; i <= n; ++i) 
    		for (int j = 1; j < n; ++j)
    			if (Map[j][i])
    				A[i][j] = -1.0 / Sz[j];
    	for (int i = 1; i <= n; ++i) A[i][i] = 1;
    	A[1][n + 1] = 1;
    	Gauss();
    	for (int i = 1; i <= n; ++i)
    		for (int j = 1; j <= n; ++j)
    			Times[Map[i][j]] = ((i != n) ? A[i][n + 1] / Sz[i] : 0) + ((j != n) ? A[j][n + 1] / Sz[j] : 0);
    	for (int i = 1; i <= m; ++i) Id[i] = i;
    	std::sort(Id + 1, Id + m + 1, [](int x, int y)->bool{ return Cmp(Times[x], Times[y]) == -1;});
    	double Ans = 0;
    	for (int i = 1; i <= m; ++i) Ans += Times[Id[i]] * i;
    	printf("%.3lf
    ", Ans);
    	return 0;
    }
    
  • 相关阅读:
    Dynamic导出解决方案修改其XML信息
    子网格
    官方文档
    ADFS登录页面自定义
    ADFS设置Tokn生命周期
    特征工程
    Pandas
    分类决策树
    Python基本知识
    机器学习的基本概念
  • 原文地址:https://www.cnblogs.com/chy-2003/p/12046151.html
Copyright © 2020-2023  润新知