• j.u.c系列(01) ---初探ThreadPoolExecutor线程池


    写在前面

      之前探索tomcat7启动的过程中,使用了线程池(ThreadPoolExecutor)的技术

    public void createExecutor() {  
        internalExecutor = true;  
        TaskQueue taskqueue = new TaskQueue();  
        TaskThreadFactory tf = new TaskThreadFactory(getName() + "-exec-", daemon, getThreadPriority());  
        executor = new ThreadPoolExecutor(getMinSpareThreads(), getMaxThreads(), 60, TimeUnit.SECONDS,taskqueue, tf);  
        taskqueue.setParent( (ThreadPoolExecutor) executor);  
    }  

    线程池ThreadPoolExecutor

      JAVA语言为我们提供了两种基础线程池的选择:ScheduledThreadPoolExecutor和ThreadPoolExecutor。它们都实现了ExecutorService接口(注意,ExecutorService接口本身和“线程池”并没有直接关系,它的定义更接近“执行器”,而“使用线程管理的方式进行实现”只是其中的一种实现方式)。这篇文章中,我们主要围绕ThreadPoolExecutor类进行讲解。

      ThreadPoolExecutor的构造方法

        public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||  maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }

      构造函数中需要传入的参数包括corePoolSize、maximumPoolSize、keepAliveTime、timeUnit和workQueue。要明确理解这些参数(和后续将要介绍的参数)的含义,就首先要搞清楚ThreadPoolExecutor线程池的逻辑结构。

      

      一定要注意一个概念,即存在于线程池中容器的一定是Thread对象,而不是您要求运行的任务(所以叫线程池而不叫任务池也不叫对象池,更不叫游泳池);您要求运行的任务将被线程池分配给某一个空闲的Thread运行。从上图中,我们可以看到构成线程池的几个重要元素:

    • 等待队列:顾名思义,就是您调用线程池对象的submit()方法或者execute()方法,要求线程池运行的任务(这些任务必须实现Runnable接口或者Callable接口)。但是出于某些原因线程池并没有马上运行这些任务,而是送入一个队列等待执行。
    • 核心线程:线程池主要用于执行任务的是“核心线程”,“核心线程”的数量是您创建线程时所设置的corePoolSize参数决定的。如果不进行特别的设定,线程池中始终会保持corePoolSize数量的线程数(不包括创建阶段)。
    • 非核心线程:一旦任务数量过多(由等待队列的特性决定),线程池将创建“非核心线程”临时帮助运行任务。您设置的大于corePoolSize参数小于maximumPoolSize参数的部分,就是线程池可以临时创建的“非核心线程”的最大数量。这种情况下如果某个线程没有运行任何任务,在等待keepAliveTime时间后,这个线程将会被销毁,直到线程池的线程数量重新达到corePoolSize
    • 要重点理解上一条描述中黑体字部分的内容。也就是说,并不是所谓的“非核心线程”才会被回收;而是谁的空闲时间达到keepAliveTime这个阀值,就会被回收。直到线程池中线程数量等于corePoolSize为止。
    • maximumPoolSize参数也是当前线程池允许创建的最大线程数量。那么如果您设置的corePoolSize参数和您设置的maximumPoolSize参数一致时,线程池在任何情况下都不会回收空闲线程。keepAliveTime和timeUnit也就失去了意义。
    • keepAliveTime参数和timeUnit参数也是配合使用的。keepAliveTime参数指明等待时间的量化值,timeUnit指明量化值单位。例如keepAliveTime=1,timeUnit为TimeUnit.MINUTES,代表空闲线程的回收阀值为1分钟。

    说完了线程池的逻辑结构,下面我们讨论一下线程池是怎样处理某一个运行任务的。下图描述了一个完整的任务处理过程:

      1、首先您可以通过线程池提供的submit()方法或者execute()方法,要求线程池执行某个任务。线程池收到这个要求执行的任务后,会有几种处理情况:

        1.1、如果当前线程池中运行的线程数量还没有达到corePoolSize大小时,线程池会创建一个新的线程运行您的任务,无论之前已经创建的线程是否处于空闲状态

        1.2、如果当前线程池中运行的线程数量已经达到设置的corePoolSize大小,线程池会把您的这个任务加入到等待队列中。直到某一个的线程空闲了,线程池会根据您设置的等待队列规则,从队列中取出一个新的任务执行。

        1.3、如果根据队列规则,这个任务无法加入等待队列。这时线程池就会创建一个“非核心线程”直接运行这个任务。注意,如果这种情况下任务执行成功,那么当前线程池中的线程数量一定大于corePoolSize。

        1.4、如果这个任务,无法被“核心线程”直接执行,又无法加入等待队列,又无法创建“非核心线程”直接执行,且您没有为线程池设置RejectedExecutionHandler。这时线程池会抛出RejectedExecutionException异常,即线程池拒绝接受这个任务。(实际上抛出RejectedExecutionException异常的操作,是ThreadPoolExecutor线程池中一个默认的RejectedExecutionHandler实现:AbortPolicy

      2、一旦线程池中某个线程完成了任务的执行,它就会试图到任务等待队列中拿去下一个等待任务(所有的等待任务都实现了BlockingQueue接口,按照接口字面上的理解,这是一个可阻塞的队列接口),它会调用等待队列的poll()方法,并停留在哪里。

      3、当线程池中的线程超过您设置的corePoolSize参数,说明当前线程池中有所谓的“非核心线程”。那么当某个线程处理完任务后,如果等待keepAliveTime时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,对所谓的“核心线程”和“非核心线程”是一视同仁的,直到线程池中线程的数量等于您设置的corePoolSize参数时,回收过程才会停止。

    allowCoreThreadTimeOut

      前文我们讨论到,线程池回收线程只会发生在当前线程池中线程数量大于corePoolSize参数的时候;当线程池中线程数量小于等于corePoolSize参数的时候,回收过程就会停止。allowCoreThreadTimeOut设置项可以要求线程池:将包括“核心线程”在内的,没有任务分配的任何线程,在等待keepAliveTime时间后全部进行回收:

    ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new ArrayBlockingQueue<Runnable>(1));
    poolExecutor.allowCoreThreadTimeOut(true);

    prestartAllCoreThreads

      前文我们还讨论到,当线程池中的线程还没有达到您设置的corePoolSize参数值的时候,如果有新的任务到来,线程池将创建新的线程运行这个任务,无论之前已经创建的线程是否处于空闲状态。这个描述可以用下面的示意图表示出来:

      prestartAllCoreThreads设置项,可以在线程池创建,但还没有接收到任何任务的情况下,先行创建符合corePoolSize参数值的线程数:

    ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new ArrayBlockingQueue<Runnable>(1));
    poolExecutor.prestartAllCoreThreads();

    使用ThreadFactory

       线程池最主要的一项工作,就是在满足某些条件的情况下创建线程。而在ThreadPoolExecutor线程池中,创建线程的工作交给ThreadFactory来完成。要使用线程池,就必须要指定ThreadFactory

       如果我们使用的构造函数时并没有指定使用的ThreadFactory,这个时候ThreadPoolExecutor会使用一个默认的ThreadFactory:DefaultThreadFactory。

    package test.thread.pool;
    import java.util.concurrent.ThreadFactory;
    /**
     * 测试自定义的一个线程工厂
     */
    public class TestThreadFactory implements ThreadFactory {
        @Override
        public Thread newThread(Runnable r) {
            // do something before new thread created;
            // create new thread , and return
            return new Thread(r);
        }
    }

    线程池的等待队列

      在使用ThreadPoolExecutor线程池的时候,需要指定一个实现了BlockingQueue接口的任务等待队列。在ThreadPoolExecutor线程池的API文档中,一共推荐了三种等待队列,它们是:SynchronousQueue、LinkedBlockingQueue和ArrayBlockingQueue;但通过观察BlockingQueue接口的实现情况,您可以发现,能够直接使用的等待队列还有:PriorityBlockingQueue、LinkedBlockingDeque和LinkedTransferQueue。

       队列和栈

    • 队列:队列是一种特殊的线性结构,允许在线性结构的前端进行删除/读取操作;允许在线性结构的后端进行插入操作;这种线性结构具有“先进先出”的操作特点:但是在实际应用中,队列中的元素有可能不是以“进入的顺序”为排序依据的。例如我们将要讲到的PriorityBlockingQueue队列。

        

    • 栈:栈也是一种线性结构,但是栈和队列相比只允许在线性结构的一端进行操作,入栈和出栈都是在一端完成。

      

      有限队列

    • SynchronousQueue: “是这样 一种阻塞队列,其中每个 put 必须等待一个 take,反之亦然。同步队列没有任何内部容量,甚至连一个队列的容量都没有。”翻译一下:这是一个内部没有任何容量的阻塞队列,任何一次插入操作的元素都要等待相对的删除/读取操作,否则进行插入操作的线程就要一直等待,反之亦然。
    SynchronousQueue<Object> queue = new SynchronousQueue<Object>();
    // 不要使用add,因为这个队列内部没有任何容量,所以会抛出异常“IllegalStateException”
    // queue.add(new Object());
    // 操作线程会在这里被阻塞,直到有其他操作线程取走这个对象
    queue.put(new Object());
    • ArrayBlockingQueue:一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。新元素插入到队列的尾部,队列获取操作则是从队列头部开始获得元素。这是一个典型的“有界缓存区”,固定大小的数组在其中保持生产者插入的元素和使用者提取的元素。一旦创建了这样的缓存区,就不能再增加其容量。试图向已满队列中放入元素会导致操作受阻塞;试图从空队列中提取元素将导致类似阻塞
    // 我们创建了一个ArrayBlockingQueue,并且设置队列空间为2
    ArrayBlockingQueue<Object> arrayQueue = new ArrayBlockingQueue<Object>(2);
    // 插入第一个对象
    arrayQueue.put(new Object());
    // 插入第二个对象
    arrayQueue.put(new Object());
    // 插入第三个对象时,这个操作线程就会被阻塞。
    arrayQueue.put(new Object());
    // 请不要使用add操作,和SynchronousQueue的add操作一样,它们都使用了AbstractQueue中的add实现

      无限队列

    • LinkedBlockingQueue:LinkedBlockingQueue是我们在ThreadPoolExecutor线程池中常应用的等待队列。它可以指定容量也可以不指定容量。由于它具有“无限容量”的特性,所以我还是将它归入了无限队列的范畴(实际上任何无限容量的队列/栈都是有容量的,这个容量就是Integer.MAX_VALUE)。LinkedBlockingQueue的实现是基于链表结构,而不是类似ArrayBlockingQueue那样的数组。但实际使用过程中,您不需要关心它的内部实现,如果您指定了LinkedBlockingQueue的容量大小,那么它反映出来的使用特性就和ArrayBlockingQueue类似了。
    LinkedBlockingQueue<Object> linkedQueue = new LinkedBlockingQueue<Object>(2);
    linkedQueue.put(new Object());
    // 插入第二个对象
    linkedQueue.put(new Object());
    // 插入第三个对象时,这个操作线程就会被阻塞。
    linkedQueue.put(new Object());
    =======================================
    // 或者如下使用:
    LinkedBlockingQueue<Object> linkedQueue = new LinkedBlockingQueue<Object>();
    linkedQueue.put(new Object());
    // 插入第二个对象
    linkedQueue.put(new Object());
    // 插入第N个对象时,都不会阻塞
    linkedQueue.put(new Object());
    • LinkedBlockingDeque: LinkedBlockingDeque是一个基于链表的双端队列。LinkedBlockingQueue的内部结构决定了它只能从队列尾部插入,从队列头部取出元素;但是LinkedBlockingDeque既可以从尾部插入/取出元素,还可以从头部插入元素/取出元素。
    LinkedBlockingDeque<TempObject> linkedDeque = new LinkedBlockingDeque<TempObject>();
    // push ,可以从队列的头部插入元素
    linkedDeque.push(new TempObject(1));
    linkedDeque.push(new TempObject(2));
    linkedDeque.push(new TempObject(3));
    // poll , 可以从队列的头部取出元素
    TempObject tempObject = linkedDeque.poll();
    // 这里会打印 tempObject.index = 3
    System.out.println("tempObject.index = " + tempObject.getIndex());
    
    // put , 可以从队列的尾部插入元素
    linkedDeque.put(new TempObject(4));
    linkedDeque.put(new TempObject(5));
    // pollLast , 可以从队列尾部取出元素
    tempObject = linkedDeque.pollLast();
    // 这里会打印 tempObject.index = 5
    System.out.println("tempObject.index = " + tempObject.getIndex());
    • PriorityBlockingQueue: PriorityBlockingQueue是一个按照优先级进行内部元素排序的无限队列。存放在PriorityBlockingQueue中的元素必须实现Comparable接口,这样才能通过实现compareTo()方法进行排序。优先级最高的元素将始终排在队列的头部;PriorityBlockingQueue不会保证优先级一样的元素的排序,也不保证当前队列中除了优先级最高的元素以外的元素,随时处于正确排序的位置
    • LinkedTransferQueue: LinkedTransferQueue也是一个无限队列,它除了具有一般队列的操作特性外(先进先出),还具有一个阻塞特性:LinkedTransferQueue可以由一对生产者/消费者线程进行操作,当消费者将一个新的元素插入队列后,消费者线程将会一直等待,直到某一个消费者线程将这个元素取走,反之亦然。

      拒绝任务

        在ThreadPoolExecutor线程池中还有一个重要的接口:RejectedExecutionHandler。当提交给线程池的某一个新任务无法直接被线程池中“核心线程”直接处理,又无法加入等待队列,也无法创建新的线程执行;又或者线程池已经调用shutdown()方法停止了工作;又或者线程池不是处于正常的工作状态;这时候ThreadPoolExecutor线程池会拒绝处理这个任务,触发您创建ThreadPoolExecutor线程池时定义的RejectedExecutionHandler接口的实现。

      ThreadPoolExecutor线程池在创建时,会使用一个默认的RejectedExecutionHandler接口实现

    public class ThreadPoolExecutor extends AbstractExecutorService {
    
        ......
    
        /**
         * The default rejected execution handler
         */
        private static final RejectedExecutionHandler defaultHandler =
            new AbortPolicy();
    
        ......
    
        // 可以看到,ThreadPoolExecutor中的两个没有指定RejectedExecutionHandler
        // 接口的构造函数,都是使用了一个RejectedExecutionHandler接口的默认实现:AbortPolicy
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 Executors.defaultThreadFactory(), defaultHandler);
        }
    
        ......
    
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 threadFactory, defaultHandler);
        }
    
        ......
    }

      实际上,在ThreadPoolExecutor中已经提供了四种可以直接使用的RejectedExecutionHandler接口的实现:

    • CallerRunsPolicy:这个拒绝处理器,将直接运行这个任务的run方法。但是,请注意并不是在ThreadPoolExecutor线程池中的线程中运行,而是直接调用这个任务实现的run方法。
    • AbortPolicy:这个处理器,在任务被拒绝后会创建一个RejectedExecutionException异常并抛出。这个处理过程也是ThreadPoolExecutor线程池默认的RejectedExecutionHandler实现。
    • DiscardPolicy:DiscardPolicy处理器,将会默默丢弃这个被拒绝的任务,不会抛出异常,也不会通过其他方式执行这个任务的任何一个方法,更不会出现任何的日志提示。
    • DiscardOldestPolicy:这个处理器很有意思。它会检查当前ThreadPoolExecutor线程池的等待队列。并调用队列的poll()方法,将当前处于等待队列列头的等待任务强行取出,然后再试图将当前被拒绝的任务提交到线程池执行。

      CallerRunsPolicy在非线程池以外直接调用任务的run方法,可能会造成线程安全上的问题;DiscardPolicy默默的忽略掉被拒绝任务,也没有输出日志或者提示,开发人员不会知道线程池的处理过程出现了错误;DiscardOldestPolicy中e.getQueue().poll()的方式好像是科学的,但是如果等待队列出现了容量问题,大多数情况下就是这个线程池的代码出现了BUG。最科学的的还是AbortPolicy提供的处理方式:抛出异常,由开发人员进行处理

    参考:

    http://blog.csdn.net/yinwenjie/article/details/50577325

    http://blog.csdn.net/lipc_/article/details/52025993

  • 相关阅读:
    (转)一文讲清TCP/IP 协议
    Java框架之Spring Boot和Spring Cloud区别
    php大力力 [006节]初步接触认识phpMyAdmin
    php大力力 [005节] php大力力简单计算器001
    php大力力 [004节]PHP常量MAMP环境下加载网页
    php大力力 [003节]php在百度文库的几个基础教程mac环境下文本编辑工具
    php大力力 [002节]mac php环境安装,mamp安装 ,phpMyAdmin启动
    php大力力 [001节]2015-08-21.php在百度文库的几个基础教程新手上路日记 大力力php 大力同学 2015-08-21 15:28
    C# DataSet与DataTable的区别和用法 ---转载
    【SqlServer】利用sql语句附加,分离数据库-----转载
  • 原文地址:https://www.cnblogs.com/chihirotan/p/7476731.html
Copyright © 2020-2023  润新知