原文出处:http://blog.chenlb.com/2009/01/ictclas4j-for-lucene-analyzer.html
在 lucene 的中文分词域里,有好几个分词选择,有:je、paoding、IK。最近想把 ictclas 拿来做 lucene 的中文分词。网上看了下资料,觉得 ictclas4j 是比较好的选择,作者博客相关文章:http://blog.csdn.net/sinboy/category/207165.aspx 。ictclas4j 目前是0.9.1版,项目地址:http://code.google.com/p/ictclas4j/ ,下载地址:http://ictclas4j.googlecode.com/files/ictclas4j_0.9.1.rar 。
下载 ictclas4j 看了下源码,正找示例,org.ictclas4j.run.SegMain 可以运行。分词的核心逻辑在org.ictclas4j.segment.Segment 的 split(String src) 方法中。运行 SegMain 的结果是一串字符串(带有词性标注),细看了 Segment 与 org.ictclas4j.bean.SegResult 没看到一个个分好的词。这样就比较难以扩展成为 lucene 的分词器。555,接下还是 hack 一下。
hack 的突破口的它的最终结果,在 SegResult 类里的 finalResult 字段记录。 在Segment.split(String src) 生成。慢慢看代码找到 outputResult(ArrayList<SegNode> wrList) 方法把一个个分好的词拼凑成 string。我们可以修改这个方法把一个个分好的词收集起来。下面是 hack 的过程。
1、修改 Segment:
1)把原来的outputResult(ArrayList<SegNode> wrList) 复制为 outputResult(ArrayList<SegNode> wrList, ArrayList<String> words) 方法,并添加收集词的内容,最后为:
- // 根据分词路径生成分词结果
- private String outputResult(ArrayList<SegNode> wrList, ArrayList<String> words) {
- String result = null;
- String temp=null;
- char[] pos = new char[2];
- if (wrList != null &amp;&amp; wrList.size() > 0) {
- result = "";
- for (int i = 0; i < wrList.size(); i++) {
- SegNode sn = wrList.get(i);
- if (sn.getPos() != POSTag.SEN_BEGIN &amp;&amp; sn.getPos() != POSTag.SEN_END) {
- int tag = Math.abs(sn.getPos());
- pos[0] = (char) (tag / 256);
- pos[1] = (char) (tag % 256);
- temp=""+pos[0];
- if(pos[1]>0)
- temp+=""+pos[1];
- result += sn.getSrcWord() + "/" + temp + " ";
- if(words != null) { //chenlb add
- words.add(sn.getSrcWord());
- }
- }
- }
- }
- return result;
- }
2)原来的outputResult(ArrayList<SegNode> wrList) 改为:
- //chenlb move to outputResult(ArrayList<SegNode> wrList, ArrayList<String> words)
- private String outputResult(ArrayList<SegNode> wrList) {
- return outputResult(wrList, null);
- }
3)修改调用outputResult(ArrayList<SegNode> wrList)的地方(注意不是所有的调用),大概在 Segment 的126行 String optResult = outputResult(optSegPath); 改为 String optResult = outputResult(optSegPath, words); 当然还要定义ArrayList<String> words了,最终 Segment.split(String src) 如下:
- public SegResult split(String src) {
- SegResult sr = new SegResult(src);// 分词结果
- String finalResult = null;
- if (src != null) {
- finalResult = "";
- int index = 0;
- String midResult = null;
- sr.setRawContent(src);
- SentenceSeg ss = new SentenceSeg(src);
- ArrayList<Sentence> sens = ss.getSens();
- ArrayList<String> words = new ArrayList<String>(); //chenlb add
- for (Sentence sen : sens) {
- logger.debug(sen);
- long start=System.currentTimeMillis();
- MidResult mr = new MidResult();
- mr.setIndex(index++);
- mr.setSource(sen.getContent());
- if (sen.isSeg()) {
- // 原子分词
- AtomSeg as = new AtomSeg(sen.getContent());
- ArrayList<Atom> atoms = as.getAtoms();
- mr.setAtoms(atoms);
- System.err.println("[atom time]:"+(System.currentTimeMillis()-start));
- start=System.currentTimeMillis();
- // 生成分词图表,先进行初步分词,然后进行优化,最后进行词性标记
- SegGraph segGraph = GraphGenerate.generate(atoms, coreDict);
- mr.setSegGraph(segGraph.getSnList());
- // 生成二叉分词图表
- SegGraph biSegGraph = GraphGenerate.biGenerate(segGraph, coreDict, bigramDict);
- mr.setBiSegGraph(biSegGraph.getSnList());
- System.err.println("[graph time]:"+(System.currentTimeMillis()-start));
- start=System.currentTimeMillis();
- // 求N最短路径
- NShortPath nsp = new NShortPath(biSegGraph, segPathCount);
- ArrayList<ArrayList<Integer>> bipath = nsp.getPaths();
- mr.setBipath(bipath);
- System.err.println("[NSP time]:"+(System.currentTimeMillis()-start));
- start=System.currentTimeMillis();
- for (ArrayList<Integer> onePath : bipath) {
- // 得到初次分词路径
- ArrayList<SegNode> segPath = getSegPath(segGraph, onePath);
- ArrayList<SegNode> firstPath = AdjustSeg.firstAdjust(segPath);
- String firstResult = outputResult(firstPath);
- mr.addFirstResult(firstResult);
- System.err.println("[first time]:"+(System.currentTimeMillis()-start));
- start=System.currentTimeMillis();
- // 处理未登陆词,进对初次分词结果进行优化
- SegGraph optSegGraph = new SegGraph(firstPath);
- ArrayList<SegNode> sns = clone(firstPath);
- personTagger.recognition(optSegGraph, sns);
- transPersonTagger.recognition(optSegGraph, sns);
- placeTagger.recognition(optSegGraph, sns);
- mr.setOptSegGraph(optSegGraph.getSnList());
- System.err.println("[unknown time]:"+(System.currentTimeMillis()-start));
- start=System.currentTimeMillis();
- // 根据优化后的结果,重新进行生成二叉分词图表
- SegGraph optBiSegGraph = GraphGenerate.biGenerate(optSegGraph, coreDict, bigramDict);
- mr.setOptBiSegGraph(optBiSegGraph.getSnList());
- // 重新求取N-最短路径
- NShortPath optNsp = new NShortPath(optBiSegGraph, segPathCount);
- ArrayList<ArrayList<Integer>> optBipath = optNsp.getPaths();
- mr.setOptBipath(optBipath);
- // 生成优化后的分词结果,并对结果进行词性标记和最后的优化调整处理
- ArrayList<SegNode> adjResult = null;
- for (ArrayList<Integer> optOnePath : optBipath) {
- ArrayList<SegNode> optSegPath = getSegPath(optSegGraph, optOnePath);
- lexTagger.recognition(optSegPath);
- String optResult = outputResult(optSegPath, words); //chenlb changed
- mr.addOptResult(optResult);
- adjResult = AdjustSeg.finaAdjust(optSegPath, personTagger, placeTagger);
- String adjrs = outputResult(adjResult);
- System.err.println("[last time]:"+(System.currentTimeMillis()-start));
- start=System.currentTimeMillis();
- if (midResult == null)
- midResult = adjrs;
- break;
- }
- }
- sr.addMidResult(mr);
- } else {
- midResult = sen.getContent();
- words.add(midResult); //chenlb add
- }
- finalResult += midResult;
- midResult = null;
- }
- sr.setWords(words); //chenlb add
- sr.setFinalResult(finalResult);
- DebugUtil.output2html(sr);
- logger.info(finalResult);
- }
- return sr;
- }
4)Segment中的构造方法,词典路径分隔可以改为"/"
5)同时修改了一个漏词的 bug,请看:ictclas4j的一个bug
2、修改 SegResult:
添加以下内容:
- private ArrayList<String> words; //记录分词后的词结果,chenlb add
- /**
- * 添加词条。
- * @param word null 不添加
- * @author chenlb 2009-1-21 下午05:01:25
- */
- public void addWord(String word) {
- if(words == null) {
- words = new ArrayList<String>();
- }
- if(word != null) {
- words.add(word);
- }
- }
- public ArrayList<String> getWords() {
- return words;
- }
- public void setWords(ArrayList<String> words) {
- this.words = words;
- }
下面是创建 ictclas4j 的 lucene analyzer
1、新建一个ICTCLAS4jTokenizer类:
- package com.chenlb.analysis.ictclas4j;
- import java.io.IOException;
- import java.io.Reader;
- import java.util.ArrayList;
- import org.apache.lucene.analysis.Token;
- import org.apache.lucene.analysis.Tokenizer;
- import org.ictclas4j.bean.SegResult;
- import org.ictclas4j.segment.Segment;
- /**
- * ictclas4j 切词
- *
- * @author chenlb 2009-1-23 上午11:39:10
- */
- public class ICTCLAS4jTokenizer extends Tokenizer {
- private static Segment segment;
- private StringBuilder sb = new StringBuilder();
- private ArrayList<String> words;
- private int startOffest = 0;
- private int length = 0;
- private int wordIdx = 0;
- public ICTCLAS4jTokenizer() {
- words = new ArrayList<String>();
- }
- public ICTCLAS4jTokenizer(Reader input) {
- super(input);
- char[] buf = new char[8192];
- int d = -1;
- try {
- while((d=input.read(buf)) != -1) {
- sb.append(buf, 0, d);
- }
- } catch (IOException e) {
- e.printStackTrace();
- }
- SegResult sr = seg().split(sb.toString()); //分词
- words = sr.getWords();
- }
- public Token next(Token reusableToken) throws IOException {
- assert reusableToken != null;
- length = 0;
- Token token = null;
- if(wordIdx < words.size()) {
- String word = words.get(wordIdx);
- length = word.length();
- token = reusableToken.reinit(word, startOffest, startOffest+length);
- wordIdx++;
- startOffest += length;
- }
- return token;
- }
- private static Segment seg() {
- if(segment == null) {
- segment = new Segment(1);
- }
- return segment;
- }
- }
2、新建一个ICTCLAS4jFilter类:
- package com.chenlb.analysis.ictclas4j;
- import org.apache.lucene.analysis.Token;
- import org.apache.lucene.analysis.TokenFilter;
- import org.apache.lucene.analysis.TokenStream;
- /**
- * 标点符等, 过虑.
- *
- * @author chenlb 2009-1-23 下午03:06:00
- */
- public class ICTCLAS4jFilter extends TokenFilter {
- protected ICTCLAS4jFilter(TokenStream input) {
- super(input);
- }
- public final Token next(final Token reusableToken) throws java.io.IOException {
- assert reusableToken != null;
- for (Token nextToken = input.next(reusableToken); nextToken != null; nextToken = input.next(reusableToken)) {
- String text = nextToken.term();
- switch (Character.getType(text.charAt(0))) {
- case Character.LOWERCASE_LETTER:
- case Character.UPPERCASE_LETTER:
- // English word/token should larger than 1 character.
- if (text.length()>1) {
- return nextToken;
- }
- break;
- case Character.DECIMAL_DIGIT_NUMBER:
- case Character.OTHER_LETTER:
- // One Chinese character as one Chinese word.
- // Chinese word extraction to be added later here.
- return nextToken;
- }
- }
- return null;
- }
- }
3、新建一个ICTCLAS4jAnalyzer类:
- package com.chenlb.analysis.ictclas4j;
- import java.io.Reader;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.analysis.LowerCaseFilter;
- import org.apache.lucene.analysis.StopFilter;
- import org.apache.lucene.analysis.TokenStream;
- /**
- * ictclas4j 的 lucene 分析器
- *
- * @author chenlb 2009-1-23 上午11:39:39
- */
- public class ICTCLAS4jAnalyzer extends Analyzer {
- private static final long serialVersionUID = 1L;
- // 可以自定义添加更多的过虑的词(高频无多太用处的词)
- private static final String[] STOP_WORDS = {
- "and", "are", "as", "at", "be", "but", "by",
- "for", "if", "in", "into", "is", "it",
- "no", "not", "of", "on", "or", "such",
- "that", "the", "their", "then", "there", "these",
- "they", "this", "to", "was", "will", "with",
- "的"
- };
- public TokenStream tokenStream(String fieldName, Reader reader) {
- TokenStream result = new ICTCLAS4jTokenizer(reader);
- result = new ICTCLAS4jFilter(new StopFilter(new LowerCaseFilter(result), STOP_WORDS));
- return result;
- }
- }
下面来测试下分词效果:
文本内容:
京华时报1月23日报道 昨天,受一股来自中西伯利亚的强冷空气影响,本市出现大风降温天气,白天最高气温只有零下7摄氏度,同时伴有6到7级的偏北风。
原分词结果:
京华/nz 时/ng 报/v 1月/t 23日/t 报道/v 昨天/t ,/w 受/v 一/m 股/q 来自/v 中/f 西伯利亚/ns 的/u 强/a 冷空气/n 影响/vn ,/w 本市/r 出现/v 大风/n 降温/vn 天气/n ,/w 白天/t 最高/a 气温/n 只/d 有/v 零下/s 7/m 摄氏度/q ,/w 同时/c 伴/v 有/v 6/m 到/v 7/m 级/q 的/u 偏/a 北风/n 。/w
analyzer:
[京华] [时] [报] [1月] [23日] [报道] [昨天] [受] [一] [股] [来自] [中] [西伯利亚] [强] [冷空气] [影响] [本市] [出现] [大风] [降温] [天气] [白天] [最高] [气温] [只] [有] [零下] [7] [摄氏度] [同时] [伴] [有] [6] [到] [7] [级] [偏] [北风]
我改过的源码可以下载:ictclas4j-091-for-lucene-src
依赖的jar:commons-lang-2.1.jar,log4j-1.2.12.jar,lucene-core-2.4.jar