• hdu 5975---Aninteresting game(树状数组)


    题目链接

    Problem Description
    Let’s play a game.We add numbers 1,2...n in increasing order from 1 and put them into some sets.
    When we add i,we must create a new set, and put iinto it.And meanwhile we have to bring [i-lowbit(i)+1,i-1] from their original sets, and put them into the new set,too.When we put one integer into a set,it costs us one unit physical strength. But bringing integer from old set does not cost any physical strength.
    After we add 1,2...n,we have q queries now.There are two different kinds of query:
    1 L R:query the cost of strength after we add all of [L,R](1≤L≤R≤n)
    2 x:query the units of strength we cost for putting x(1≤x≤n) into some sets.
     
    Input
    There are several cases,process till end of the input.
    For each case,the first line contains two integers n and q.Then q lines follow.Each line contains one query.The form of query has been shown above.
    n≤10^18,q≤10^5
     
    Output
    For each query, please output one line containing your answer for this query
     
    Sample Input
    10 2
    1 8 9
    2 6
     
    Sample Output
    9
    2
     
    Hint
    lowbit(i) =i&(-i).It means the size of the lowest nonzero bits in binary of i. For example, 610=1102, lowbit(6) =102= 210 When we add 8,we should bring [1,7] and 8 into new set. When we add 9,we should bring [9,8] (empty) and 9 into new set. So the first answer is 8+1=9. When we add 6 and 8,we should put 6 into new sets. So the second answer is 2.
     
    题意:每次查询有两种操作
               op1:求加入L~R的数时所消耗的单元
               op2:求将x加入集合或移动到其它集合所消耗的单元(即由x引起消耗的单元)
     
    思路:op1:每次加入一个数i 那么会移动[i-lowbit(i)+1 , i-1] ,总的消耗是i-(i-lowbit(i)+1) +1=lowbit(i) 所以每次加入一个数对应的消耗是2的幂次,那么求L~R即可以枚举幂次,即: ans+=(n/(1<<i)-n/(1<<(i+1)))*(1<<i)
                     解释一下,n/(1<<i)-n/(1<<(i+1))表示长为2^i的消耗的数的个数,例如:n=10 , 包含长为2的数是2,6,10 为什么4,8不是,因为它们虽然是2的倍数,但更是4的倍数,包含更长的区间了,所以这部分要减去。
            op2:由树状数组可知 [i-lowbit(i)+1 , i-1] 是以i为根节点对应的区间,如果假如的数能够移动i ,那么这个数对应的孩子区间一定包含i ,所以从x向上一直找父节点即可。
     
    代码如下:
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    typedef long long LL;
    LL lowbit(LL x)
    {
        return x&(-x);
    }
    LL query(LL x,LL n)
    {
        LL ans=0;
        while(x<=n)
        {
            ans++;
            x+=lowbit(x);
        }
        return ans;
    }
    LL cal(LL x)
    {
        LL ans=0;
        LL tmp=1;
        for(LL i=0; tmp<=x; i++)
            ans+=(x/(tmp)-x/(tmp<<1))*tmp,tmp<<=1;
        return ans;
    }
    int main()
    {
        LL n,q;
        while(scanf("%lld%lld",&n,&q)!=EOF)
        {
            while(q--)
            {
                int op;
                scanf("%d",&op);
                if(op==1)
                {
                    LL x,y;
                    scanf("%lld%lld",&x,&y);
                    LL ans=cal(y)-cal(x-1);
                    printf("%lld
    ",ans);
                }
                else
                {
                    LL x;
                    scanf("%lld",&x);
                    LL ans=query(x,n);
                    printf("%lld
    ",ans);
                }
            }
        }
        return 0;
    }
     
     
     
     
  • 相关阅读:
    游戏方案
    团队介绍
    【面向对象程序设计】作业四
    FIFO与LRU实现(Java)
    spring事务介绍
    微信抢红包算法
    Hibernate Dao映射配置通用接口类反射获取加载calass实例
    股票两次买卖最大收益(java)
    Eclipse安装JD-Eclipse反编译插件看源码
    Java GC调优
  • 原文地址:https://www.cnblogs.com/chen9510/p/6953494.html
Copyright © 2020-2023  润新知