• P4274 [NOI2004]小H的小屋 dp 贪心


    LINK:小H的小屋

    尽管有论文 但是 其证明非常的不严谨 结尾甚至还是大胆猜测等字样...

    先说贪心:容易发现m|n的时候此时均分两个地方就是最优的。

    关于这个证明显然m在均分的时候的分点一定是n的子集 考虑不为均分的时候答案一块增多一个增少 但是增多的幅度显然更大 所以的证。

    然后 当m不整除n的时候 容易想到还是均分的思路 不过 这次 对于一部分均分到的是 n/m 一部分是n/m+1.

    然后暴力枚举中间的分点即可 然后进行计算。

    这样复杂度O(100) 异常优秀。

    考虑不那么优秀的dp.

    容易想到 每放一块北墙对应多块南墙 设状态 f[i][j][k]表示前i块北墙j块南墙此时端点在j的最小值。

    这状态转移是n^5的 不过大力跑也能A.值得注意的是 在状态转移的时候需要预处理一下数组g[i][j]表示i个南墙分j个距离的最小值。

    因为题目中明确说了 分的位置必须为整数。当然直接计算也是可以依靠分成两段计算也行。可以发现那样也是最优的。

    考虑优化 考虑优化j的状态转移 当k递增时 j的转移必然递增。

    考虑到 如果j减小了那么造成对于更小的面积用更多的墙 这显然不是最优的。

    所以此时总复杂度n^4.

    值得注意的是 还可以优化 对于 i,j,k固定的时候 j,k的决策一定不会比 i+1,j,k的决策更大 所以再开个数组存上次的决策来优化转移。

    这个证明不太会。

    n^4的做法 显然可过嘛.

    const int MAXN=310000,G=3;
    int m,n;
    db ans,k1,k2,s1;
    db f[102][102][102];//f[i][j][k]表示 前i个北墙 前j个南墙 现在到达点k的最小面积
    db g[102][102];
    //int g[101][101][101][2];//g[i][j][k]表示 这个状态的最优决策
    int main()
    {
    	freopen("1.in","r",stdin);
    	gi(k1);//北
    	gi(k2);//南
    	gt(m);//北
    	gt(n);//南
    	//m<=n;
    	if(n%m==0)
    	{
    		db w2=100.0/(n*1.0);
    		db w1=100.0/(m*1.0);
    		ans=w2*k2*n*w2+w1*w1*k1*m;
    		printf("%.1lf
    ",ans);
    		return 0;
    	}
    	rep(0,m,i)rep(0,n,j)rep(0,100,k)f[i][j][k]=INF;
    	rep(0,n,i)rep(0,100,k)g[i][k]=INF;
    	g[0][0]=0;
    	rep(1,n,i)rep(i,100,j)
    		rep(1,j,k)g[i][j]=min(g[i][j],g[i-1][j-k]+k*k*k2);
    	f[0][0][0]=0;
    	rep(1,m,i)//北墙
    		rep(i,n,j)//南墙
    		{
    			rep(j,100,k)
    			{
    				//枚举北墙的决策得到南墙的决策.
    				//cout<<f[i][j][k]<<endl;
    				int w2=1;//w2逐渐增大
    				rep(1,k,w1)//w1决策增大的时候 w2决策不会减小
    				{
    					while(g[w2+1][w1]+f[i-1][j-w2-1][k-w1]<f[i-1][j-w2][k-w1]+g[w2][w1]&&w2+1<=j)++w2;
    					//rep(1,j,w2)
    					f[i][j][k]=min(f[i][j][k],f[i-1][j-w2][k-w1]+g[w2][w1]+(db)w1*k1*w1);
    					//if(i<=1&&j<=1&&k<=10)cout<<f[i-1][j-w2][k-w1]<<' '<<f[	i][j][k]<<' '<<i<<' '<<j<<' '<<k<<' '<<w2<<' '<<j-w2<<' '<<k-w1<<endl;
    				}
    			}
    		}
    	printf("%.1lf",f[m][n][100]);
    	return 0;
    }
    
  • 相关阅读:
    “问答回复模块”Java开发文档官方改进版讲解【在线实习·吾研第二期】
    “付费邀请模块”产品原型图评审【在线实习·吾研第三期】
    “学长学姐认证模块”测试用例官方改进版讲解【在线实习·吾研第一期】
    “学长认证模块”Java代码2.0官方版要点讲解【在线实习·吾研第一期】
    “问答评论模块”UI作品评审【在线实习·吾研第二期】
    “认证模块”前端代码1.0评审【在线实习·吾研第一期】
    <<中国专利法详解>>学习笔记(一)
    JS 前端获得时间
    北漂的程序员
    Spring类注入异常
  • 原文地址:https://www.cnblogs.com/chdy/p/12808873.html
Copyright © 2020-2023  润新知