https://leetcode.com/mockinterview/session/result/xyc51it/
https://leetcode.com/problems/recover-binary-search-tree/
// 想到了Space O(N)的解法:方法是直接将BST放平,然后重新排序,然后比较一下就可以。
// 原题中提到说,有 Space O(Constant)的方法,还要研究一下
看了Discuss,也上网搜了一下,发现空间O(1)可以用 Morris遍历的方法。单独写了一篇博客,方法介绍如下:
http://www.cnblogs.com/charlesblc/p/6013506.html
下面是leetcode这道题目我的解答。没有使用O(1)空间复杂度,使用了O(n)空间复杂度。 还用到了Java里面 Arrays.sort方法,也需要注意toArray函数的参数。
除了这种解法,还有一种,是我之前做的方法,也很好,通过两个数字记录可能出错的位置,很巧妙,在这个后面给出。
package com.company;import java.util.*; class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } class StkNode { TreeNode tn; int count; StkNode(TreeNode tn) { this.tn = tn; count = 0; } } class Solution { List<Integer> getArray(TreeNode root) { List<Integer> ret = new ArrayList<>(); if (root.left != null) { ret.addAll(getArray(root.left)); } ret.add(root.val); if (root.right != null) { ret.addAll(getArray(root.right)); } return ret; } public void recoverTree(TreeNode root) { // Space O(N)的解法,想到了是直接将BST放平,然后重新排序,然后比较一下就可以。 // 分情况, 左ok, 右ok, 1. 上ok, 2. 上不ok // 左不ok, 或者右不ok, 1. 上ok, // 想不清楚,先用直接的方法: if (root == null) { return; } List<Integer> ret = getArray(root); Integer[] sortRet= ret.toArray(new Integer[0]); Arrays.sort(sortRet); int[] change = new int[2]; int[] index = new int[2]; int ii = 0; for (int i=0; i<sortRet.length; i++) { //System.out.printf("old: %d, new: %d ", ret.get(i), sortRet[i]); if (ret.get(i) != sortRet[i]) { index[ii] = i+1; change[ii] = sortRet[i]; ii++; if (ii >= 2) { break; } } } //System.out.printf("ii:%d ", ii); Stack<StkNode> stk = new Stack<>(); int count = 0; int k = 0; StkNode stkRoot = new StkNode(root); stk.push(stkRoot); while (!stk.isEmpty()) { StkNode tmp = stk.pop(); //System.out.printf("here: %d, %d, %d ", tmp.count, count, tmp.tn.val); if (tmp.count == 1) { count++; if (count == index[k]) { //System.out.printf("here: %d ", count); tmp.tn.val = change[k]; k++; if (k>=2) { return; } } if (tmp.tn.right != null) { StkNode newTmp = new StkNode(tmp.tn.right); stk.push(newTmp); } } else { tmp.count++; stk.push(tmp); if (tmp.tn.left != null) { StkNode newTmp = new StkNode(tmp.tn.left); stk.push(newTmp); } } } } } public class Main { public static void main(String[] args) { System.out.println("Hello!"); Solution solution = new Solution(); TreeNode root = new TreeNode(2); TreeNode root2 = new TreeNode(3); TreeNode root3 = new TreeNode(1); root.left = root2; root.right = root3; solution.recoverTree(root); System.out.printf("Get ret: "); System.out.printf("Get ret1: %d ", root.left.val); System.out.printf("Get ret2: %d ", root.val); System.out.printf("Get ret3: %d ", root.right.val); System.out.println(); /*Iterator<List<Integer>> iterator = ret.iterator(); while (iterator.hasNext()) { Iterator iter = iterator.next().iterator(); while (iter.hasNext()) { System.out.printf("%d,", iter.next()); } System.out.println(); }*/ System.out.println(); } }
下面我之前的解法,也很好,通过两个数字来记录可能的出错位置,并且在遍历的同时,更新这个位置。需要对出错的规律有深刻了解,比如在解法中,first_result位置就始终没有变过,因为一旦找到就可以不变,通过second_result位置的改变,就能满足条件:
https://leetcode.com/problems/recover-binary-search-tree/ /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { stack < pair <TreeNode*, int> > stk; public: void recoverTree(TreeNode* root) { if (root == NULL) { return; } pair<TreeNode*, int> pr(root, 0); stk.push(pr); TreeNode * first_result = NULL; TreeNode * last_result = NULL; TreeNode* last = NULL; pair<TreeNode*, int> tmp; TreeNode* tn_tmp; while ( !stk.empty() ) { tmp = stk.top(); stk.pop(); if (tmp.second == 0) { // left tn_tmp = tmp.first; pair<TreeNode*, int> tmp_cur(tn_tmp, 1); stk.push(tmp_cur); if (tn_tmp->left != NULL) { pair<TreeNode*, int> tmp_left(tn_tmp->left, 0); stk.push(tmp_left); } } else { // right tn_tmp = tmp.first; if (last != NULL && last->val > tn_tmp->val) { // Found if (first_result == NULL ) { first_result = last; last_result = tn_tmp; } else { last_result = tn_tmp; break; } } last = tn_tmp; if (tn_tmp->right != NULL) { pair<TreeNode*, int> tmp_pr(tn_tmp->right, 0); stk.push(tmp_pr); } } } if (first_result != NULL && last_result != NULL) { int swap = first_result->val; first_result->val = last_result->val; last_result->val = swap; } return; } };