volatile
一、volatile修饰的变量具有内存可见性
volatile是变量修饰符,其修饰的变量具有内存可见性。
可见性也就是说一旦某个线程修改了该被volatile修饰的变量,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,可以立即获取修改之后的值。
在Java中为了加快程序的运行效率,对一些变量的操作通常是在该线程的寄存器或是CPU缓存上进行的,之后才会同步到主存中,而加了volatile修饰符的变量则是直接读写主存。
实例讲解:
class FlagThread extends Thread{
private boolean flag = false;
@Override
public void run() {
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
flag = true;
System.out.println("flag : " + flag);
}
public boolean isFlag() {
return flag;
}
}
public class TestVolatile {
public static void main(String[] args) {
FlagThread flagThread = new FlagThread();
flagThread.start();
while (true){
if (flagThread.isFlag()){
System.out.println("------------------------");
break;
}
}
}
}
程序输出:(main线程结束不了)
问题分析:
在操作共享数据的时候,系统会将共享数据放置在主存中。
流程分析:
步骤一:
线程1:读取到的主存数据,flag = true;
main线程:读取到的主存数据,flag = true;
步骤二:
线程1:修改自身线程缓存空间的值,令flag = false;并将其更新到主存中,此时主存中的flag = false.
但是,main线程中的值,仍然是,flag = false,并一直循环下去。
因此,main线程始终在循环中,无法检测到falg已经变化的值。
二、volatile禁止指令重排
volatile可以禁止进行指令重排。
指令重排是指处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证各个语句的执行顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。指令重排序不会影响单个线程的执行,但是会影响到线程并发执行的正确性。
程序执行到volatile修饰变量的读操作或者写操作时,在其前面的操作肯定已经完成,且结果已经对后面的操作可见,在其后面的操作肯定还没有进行。
volatile的使用举例
//线程1:
context = loadContext(); //语句1 context初始化操作
inited = true; //语句2
//线程2:
while(!inited ){
sleep()
}
doSomethingwithconfig(context);
因为指令重排序,有可能语句2会在语句1之前执行,可能导致context还没被初始化,而线程2中,
// 此处判断为false,则不会进入循环
while(!inited ){
sleep()
}
因而,线程2使用未初始化的context去进行操作,导致程序出错。
这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,这是因为volatile禁止指令重排:程序执行到volatile修饰变量的读操作或者写操作时,在其前面的操作肯定已经完成,且结果已经对后面的操作可见,在其后面的操作肯定还没有进行。
synchronized
三、synchronized
synchronized可作用于一段代码或方法,既可以保证可见性,又能够保证原子性。
可见性体现在:通过synchronized或者Lock能保证同一时刻只有一个线程获取锁然后执行同步代码,并且在释放锁之前会将对变量的修改刷新到主存中。
原子性表现在:要么不执行,要么执行到底。
实例讲解:必须使用synchronized而不能使用volatile的场景
public class Test {
public volatile int inc = 0;
public void increase() {
inc++;
}
public static void main(String[] args) {
final Test test = new Test();
for(int i=0;i<10;i++){
new Thread(){
public void run() {
for(int j=0;j<1000;j++)
test.increase();
};
}.start();
}
while(Thread.activeCount()>1) //保证前面的线程都执行完
Thread.yield();
System.out.println(test.inc);
}
}
程序分析:
结果:例子中用new了10个线程,分别去调用1000次increase()方法,每次运行结果都不一致,都是一个小于10000的数字。
问题分析:自增操作不是原子操作,volatile 是不能保证原子性的。回到文章一开始的例子,使用volatile修饰int型变量i,多个线程同时进行i++操作。比如有两个线程A和B对volatile修饰的i进行i++操作,i的初始值是0,A线程执行i++时刚读取了i的值0,就切换到B线程了,B线程(从内存中)读取i的值也为0,然后就切换到A线程继续执行i++操作,完成后i就为1了,接着切换到B线程,因为之前已经读取过了,所以继续执行i++操作,最后的结果i就为1了。同理可以解释为什么每次运行结果都是小于10000的数字。
但是使用synchronized对部分代码进行如下修改,就能保证同一时刻只有一个线程获取锁然后执行同步代码。运行结果必然是10000。
public int inc = 0;
public synchronized void increase() {
inc++;
}
内存可见性
在Java中,我们都知道关键字synchronized可以用于实现线程间的互斥,但我们却常常忘记了它还有另外一个作用,那就是确保变量在内存的可见性 - 即当读写两个线程同时访问同一个变量时,synchronized用于确保写线程更新变量后,读线程再访问该 变量时可以读取到该变量最新的值。
即当ThreadA释放锁M时,它所写过的变量(比如,x和y,存在它工作内存中的)都会同步到主存中,而当ThreadB在申请同一个锁M时,ThreadB的工作内存会被设置为无效,然后ThreadB会重新从主存中加载它要访问的变量到它的工作内存中(这时x=1,y=1,是ThreadA中修改过的最新的值)。通过这样的方式来实现ThreadA到ThreadB的线程间的通信。
//线程A,B共同访问的代码
Object lock = new Object();
int a=0;
int b=0;
int c=0;
//线程A,调用如下代码
synchronized(lock){
a=1; //1
b=2; //2
} //3
c=3; //4
//线程B,调用如下代码
synchronized(lock){ //5
System.out.println(a); //6
System.out.println(b); //7
System.out.println(c); //8
}
我们假设线程A先运行,分别给a,b,c三个变量进行赋值(注:变量a,b的赋值是在同步语句块中进行的),然后线程B再运行,分别读取出这三个变量的值并打印出来。那么线程B打印出来的变量a,b,c的值分别是多少?
输出结果:
线程B里,打印的a,b肯定是1和2. 但是,访问的到c变量有可能还是0,而不是3.
四、总结
(1)从而我们可以看出volatile虽然具有可见性但是并不能保证原子性。
(2)性能方面,synchronized关键字是防止多个线程同时执行一段代码,就会影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized。
但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。