• cs231n knn


    # coding: utf-8
    
    # In[19]:
    
    
    import random
    import numpy as np
    from cs231n.data_utils import load_CIFAR10
    import matplotlib.pyplot as plt
    
    from __future__ import print_function
    
    get_ipython().run_line_magic('matplotlib', 'inline')
    plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    get_ipython().run_line_magic('load_ext', 'autoreload')
    get_ipython().run_line_magic('autoreload', '2')
    
    
    # In[20]:
    
    
    cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
    try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
    except:
       pass
    
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
    print(X_train.shape,y_train.shape, X_test.shape, y_test.shape)
    
    
    # In[21]:
    
    
    num_training = 5000
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]
    
    num_test = 50 #500 #加快速度,取50测试
    mask = list(range(num_test))
    X_test = X_test[mask]
    y_test = y_test[mask]
    print('ok')
    
    
    # In[22]:
    
    
    # 三维转一维
    print(X_train.shape, X_test.shape) # (5000, 32, 32, 3) (500, 32, 32, 3)
    X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    print(X_train.shape, X_test.shape) # (5000, 3072) (500, 3072)      32*32*3=3072
    
    
    # In[109]:
    
    
    class NearestNeighbor(object):
    
        def train(self, X, y):
            self.Xtrain = X
            self.ytr = y
    ########################################################################
    # 直接预测
        def predict_l1(self, X): # 曼哈顿距离
            num_test = X.shape[0]
            Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
            for i in range(num_test):
                distances = np.sum(np.abs(self.Xtrain - X[i,:]), axis = 1)  # L1
                min_index = np.argmin(distances) # get the index with smallest distance
                Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
            return Ypred
            
        def predict_l2(self, X): # 欧氏距离
            num_test = X.shape[0]
            Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
            for i in range(num_test):
                distances = np.sqrt(np.sum(np.square(self.Xtrain - X[i,:]), axis = 1))
                min_index = np.argmin(distances) # get the index with smallest distance
                Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
            return Ypred
    ########################################################################
    # 以下计算欧氏距离l2
        def compute_dist_2_loop(self,Xtest):
            train_len = self.Xtrain.shape[0]
            test_len = Xtest.shape[0]
            dists = np.zeros((test_len,train_len))
            for i in range(test_len):
                for j in range(train_len):
    #                 dists[i][j] = np.sum(np.abs(self.Xtrain[j]-Xtest[i])) # l1
                    dists[i][j] = np.sqrt( np.sum( np.square(self.Xtrain[j]-Xtest[i]) ) ) # l2
                    # dists[i][j]    dists[i,j]
            return dists # 1203599820.3775597
        
        def compute_dist_1_loop(self,Xtest):
            train_len = self.Xtrain.shape[0] # 5000
            test_len = Xtest.shape[0]        # 50
            dists = np.zeros( (test_len, train_len) ) # 50*5000
            for i in range(test_len):
                dists[i] = np.sqrt(np.sum(np.square(self.Xtrain-Xtest[i]), axis=1))
                # dists[i,:]   dists[i]
    #             dists[i,:] = np.linalg.norm(X[i,:]-self.X_train,axis=1) 
                #np.linalg.norm范式
    #     https://blog.csdn.net/lanchunhui/article/details/51004387
    
            return dists # 1203599820.3775597
        
        def compute_dist_no_loop(self,Xtest):
    #         大概可以理解为 sqrt((a-b)^2) => sqrt( a^2 + b^2 - 2ab ) 展开,矩阵注意维度
            a2 = np.sum(self.Xtrain**2, axis=1) # 5000*1  # **2 or np.square
            b2 = np.sum(Xtest**2, axis=1)        # 50*1
            dot_matrix = np.dot(Xtest, self.Xtrain.T) # 50*5000
    #         print(dot_matrix.shape)
    #         print(a2.shape) # (5000,)
    #         print(b2.shape) # (50,)
    #         print(b2.T.shape) #对向量直接用.T  向量不变  (50,)
    #         此时,a2 b2都是向量,要与点积得到的矩阵50*5000想相a加减,先将reshape,后用到广播机制
    #         向量貌似e可以隐式转换为一个1行n列的矩阵,但不可隐式转为n行1列的矩阵
            return np.sqrt(a2 + np.reshape(b2,(-1,1)) - 2*dot_matrix) # reshape -1 自适应
            
        
    #         https://blog.csdn.net/qq_41671051/article/details/80096269
    #         https://blog.csdn.net/hqh131360239/article/details/79061535
    
        def _compute_distances_no_loops(self, X):
            num_test = X.shape[0]  
            num_train = self.Xtrain.shape[0]  
            dists = np.zeros((num_test, num_train))   
            test_sum = np.sum(np.square(X), axis = 1) # 500*3072 - 500*1 以500,形式表示  
            train_sum = np.sum(np.square(self.Xtrain), axis = 1) # 5000*3072 - 5000*1 以5000,形式表示  
            dianji = np.dot(X, self.Xtrain.T)  #点积(转置)500*5000  
            dists = np.sqrt(-2 * dianji + test_sum.reshape(-1,1) + train_sum) #平方展开,广播  
            return dists
            
    
    
    # In[ ]:
    
    
    # 2 loop、1 loop、no loop三种方式,
    # 2 loop、1 loop 耗时较长,时间差不多
    # no loop 耗时短。并行运算,大大提高了速度。
    
    
    # In[110]:
    
    
    classifier = NearestNeighbor()
    classifier.train(X_train, y_train)
    
    # ans_l1 = classifier.predict_l1(X_test)
    # print(np.mean(ans_l1==y_test)) # 0.22
    
    # ans_l2 = classifier.predict_l2(X_test)
    # print(np.mean(ans_l2==y_test)) # 0.18
    
    ans = classifier.compute_dist_no_loop(X_test)
    print(np.sum(ans)) # 1203599820.3775597
    
    print('ok')
    
    
    # In[85]:
    
    
    #################################
    # test area
    import numpy as np
    a = np.array([ [1,2,3], [4,5,6], [7,8,9] ])
    # print(a)
    # print(a[1][1],a[1,1])
    # print(a[1])
    # print(np.array((-2,4,2)))
    print(np.square(a))
    print(a**2)
  • 相关阅读:
    cl编译器命令行调试问题
    西电计算机专业培养
    GCN代码实现
    GCN介绍
    cpu密集型任务及IO密集型任务,GIS,多进程及多线程
    骨架提取
    视频文件的一些属性
    空洞填充
    凸包,二值图家矩形框
    RGB图片取大于阈值部分
  • 原文地址:https://www.cnblogs.com/cbattle/p/9026622.html
Copyright © 2020-2023  润新知