# coding: utf-8 # In[19]: import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt from __future__ import print_function get_ipython().run_line_magic('matplotlib', 'inline') plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # In[20]: cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape,y_train.shape, X_test.shape, y_test.shape) # In[21]: num_training = 5000 mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] num_test = 50 #500 #加快速度,取50测试 mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] print('ok') # In[22]: # 三维转一维 print(X_train.shape, X_test.shape) # (5000, 32, 32, 3) (500, 32, 32, 3) X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) print(X_train.shape, X_test.shape) # (5000, 3072) (500, 3072) 32*32*3=3072 # In[109]: class NearestNeighbor(object): def train(self, X, y): self.Xtrain = X self.ytr = y ######################################################################## # 直接预测 def predict_l1(self, X): # 曼哈顿距离 num_test = X.shape[0] Ypred = np.zeros(num_test, dtype = self.ytr.dtype) for i in range(num_test): distances = np.sum(np.abs(self.Xtrain - X[i,:]), axis = 1) # L1 min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min_index] # predict the label of the nearest example return Ypred def predict_l2(self, X): # 欧氏距离 num_test = X.shape[0] Ypred = np.zeros(num_test, dtype = self.ytr.dtype) for i in range(num_test): distances = np.sqrt(np.sum(np.square(self.Xtrain - X[i,:]), axis = 1)) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min_index] # predict the label of the nearest example return Ypred ######################################################################## # 以下计算欧氏距离l2 def compute_dist_2_loop(self,Xtest): train_len = self.Xtrain.shape[0] test_len = Xtest.shape[0] dists = np.zeros((test_len,train_len)) for i in range(test_len): for j in range(train_len): # dists[i][j] = np.sum(np.abs(self.Xtrain[j]-Xtest[i])) # l1 dists[i][j] = np.sqrt( np.sum( np.square(self.Xtrain[j]-Xtest[i]) ) ) # l2 # dists[i][j] dists[i,j] return dists # 1203599820.3775597 def compute_dist_1_loop(self,Xtest): train_len = self.Xtrain.shape[0] # 5000 test_len = Xtest.shape[0] # 50 dists = np.zeros( (test_len, train_len) ) # 50*5000 for i in range(test_len): dists[i] = np.sqrt(np.sum(np.square(self.Xtrain-Xtest[i]), axis=1)) # dists[i,:] dists[i] # dists[i,:] = np.linalg.norm(X[i,:]-self.X_train,axis=1) #np.linalg.norm范式 # https://blog.csdn.net/lanchunhui/article/details/51004387 return dists # 1203599820.3775597 def compute_dist_no_loop(self,Xtest): # 大概可以理解为 sqrt((a-b)^2) => sqrt( a^2 + b^2 - 2ab ) 展开,矩阵注意维度 a2 = np.sum(self.Xtrain**2, axis=1) # 5000*1 # **2 or np.square b2 = np.sum(Xtest**2, axis=1) # 50*1 dot_matrix = np.dot(Xtest, self.Xtrain.T) # 50*5000 # print(dot_matrix.shape) # print(a2.shape) # (5000,) # print(b2.shape) # (50,) # print(b2.T.shape) #对向量直接用.T 向量不变 (50,) # 此时,a2 b2都是向量,要与点积得到的矩阵50*5000想相a加减,先将reshape,后用到广播机制 # 向量貌似e可以隐式转换为一个1行n列的矩阵,但不可隐式转为n行1列的矩阵 return np.sqrt(a2 + np.reshape(b2,(-1,1)) - 2*dot_matrix) # reshape -1 自适应 # https://blog.csdn.net/qq_41671051/article/details/80096269 # https://blog.csdn.net/hqh131360239/article/details/79061535 def _compute_distances_no_loops(self, X): num_test = X.shape[0] num_train = self.Xtrain.shape[0] dists = np.zeros((num_test, num_train)) test_sum = np.sum(np.square(X), axis = 1) # 500*3072 - 500*1 以500,形式表示 train_sum = np.sum(np.square(self.Xtrain), axis = 1) # 5000*3072 - 5000*1 以5000,形式表示 dianji = np.dot(X, self.Xtrain.T) #点积(转置)500*5000 dists = np.sqrt(-2 * dianji + test_sum.reshape(-1,1) + train_sum) #平方展开,广播 return dists # In[ ]: # 2 loop、1 loop、no loop三种方式, # 2 loop、1 loop 耗时较长,时间差不多 # no loop 耗时短。并行运算,大大提高了速度。 # In[110]: classifier = NearestNeighbor() classifier.train(X_train, y_train) # ans_l1 = classifier.predict_l1(X_test) # print(np.mean(ans_l1==y_test)) # 0.22 # ans_l2 = classifier.predict_l2(X_test) # print(np.mean(ans_l2==y_test)) # 0.18 ans = classifier.compute_dist_no_loop(X_test) print(np.sum(ans)) # 1203599820.3775597 print('ok') # In[85]: ################################# # test area import numpy as np a = np.array([ [1,2,3], [4,5,6], [7,8,9] ]) # print(a) # print(a[1][1],a[1,1]) # print(a[1]) # print(np.array((-2,4,2))) print(np.square(a)) print(a**2)