-
学习笔记 | Artificial Intelligence for Robotics
Artificial Intelligence for Robotics
Overview
- Lesson 1 - Localization Overview (9/22/2017 - 10/1/2017)
- Lesson 2 - Kalman Filters (10/3/2017 - )
- Lesson 3 - Particle Filters
- Lesson 4 - Search
- Lesson 5 - PID Control
- Lesson 6 - SLAM
- Exam
- Project
Note
1. Localization Overview
- Postierior
- Convolution
- Measurement update
- Localization
- Belief = Probility by Normalization
- Sense = Product of the following
- Move = Convolution (Addition)
- Bayes's Rule
- The Theroem of Total Probability
- Monte Carlo Localization
- histogram filters
2. Kalman Filters
- Kalman Filters vs Monte Carlo Localization
-
Kalman Filters |
Monte Carlo Localization |
continuous |
discrete |
uni-modal |
multi-modal |
Gaussian |
Histogram |
3. Particle Filters
4. Search
5. PID Control
6. SLAM
Practice Exam
Project
Reference
- Udacity Course: Artificial Intelligence for Robotics
- Coursera: Robotics - Estimation and Learning
- Probabilistic Robotics
-
相关阅读:
1490. Clone N-ary Tree
1485. Clone Binary Tree With Random Pointer
*Minimum-cost Flow【网络流】
2020牛客暑期多校训练营(第一场)
P2719 搞笑世界杯
Bus Number【多重集合的排列】
New Year and Old Subsequence【矩阵+线段树+DP】
Magic Master【模拟/约瑟夫环】
The Nth Item【斐波那契】
Random Access Iterator【树上求概率】
-
原文地址:https://www.cnblogs.com/casperwin/p/7580024.html
Copyright © 2020-2023
润新知