• leetcode:Implement Stack using Queues 与 Implement Queue using Stacks


    一、Implement Stack using Queues

    Implement the following operations of a stack using queues.

    • push(x) -- Push element x onto stack.
    • pop() -- Removes the element on top of the stack.
    • top() -- Get the top element.
    • empty() -- Return whether the stack is empty.

    Notes:

      • You must use only standard operations of a queue -- which means only push to backpeek/pop from frontsize, and is empty operations are valid.
      • Depending on your language, queue may not be supported natively. You may simulate a queue by using a list or deque (double-ended queue), as long as you use only standard operations of a queue.
      • You may assume that all operations are valid (for example, no pop or top operations will be called on an empty stack).

    分析:用(两个)队列实现栈

    设置两个队列分别为1和2

    (1)入栈:如果队列2当前有元素,而队列1为空(反之亦然),那么将需要入栈的元素放入队列1中,然后将队列2中的元素依次出队并入队到队列1中。(即要保证有一个队列是空的)

    (2)出栈:将有元素(不为空)的队列出队即可-------如:

    先将元素a插入队列1中 ,现在要将元素b入栈,则将b插入到队列2中然后将队列1中的a出队到队列2中,则队列2中的元素变为 b,a

    这样队列1为空,现在要压入c, 则将c插入队列1中 ,依次将队列2中的b ,a出队并加入到队列1中 ,则队列1中的元素变为 c,b,a,而队列2为空

    (保证一队列为空)

    代码如下:

     【两个队列】

    class Stack {  
    public:  
        // Push element x onto stack.  
        queue<int> queue1;  
        queue<int> queue2;  
        void push(int x) {  
            if (queue1.empty())  
            {  
                queue1.push(x);  
                while(!queue2.empty()){  
                    int tmp = queue2.front();  
                    queue2.pop();  
                    queue1.push(tmp);  
                }  
            }else{  
                queue2.push(x);  
                while(!queue1.empty()){  
                    int tmp = queue1.front();  
                    queue1.pop();  
                    queue2.push(tmp);  
                }  
            }  
        }  
      
        // Removes the element on top of the stack.  
        void pop() {  
            if (!queue1.empty())  
                queue1.pop();  
            if (!queue2.empty())  
                queue2.pop();  
        }  
      
        // Get the top element.  
        int top() {  
            if (!queue1.empty())  
                return queue1.front();  
            if (!queue2.empty())  
                return queue2.front();  
        }  
      
        // Return whether the stack is empty.  
        bool empty() {  
            return queue1.empty() && queue2.empty();  
        }  
    };
    

     其他解法:

     【两个队列】用两个队列myStack,temp实现一个栈。push时把新元素添加到myStack的队尾。pop时把myStack中除最后一个元素外逐个添加到myStack中,然后pop掉myStack中的最后一个元素,然后注意记得myStack和temp,以保证我们添加元素时始终向temp中添加。

    class Stack {
    public:
        // Push element x onto stack.
        void push(int x) {
            myStack.push(x);
        }
    
        // Removes the element on top of the stack.
        void pop() {
            std::queue<int> temp;
            int len = myStack.size();
            for(int i = 0; i < len - 1; i++) {
                temp.push(myStack.front());
                myStack.pop();
            }
            myStack = temp;
        }
    
        // Get the top element.
        int top() {
            if(myStack.size() != 0) return myStack.back();
        }
    
        // Return whether the stack is empty.
        bool empty() {
            if(myStack.size() == 0) return true;
            else return false;
        }
    private:
        std::queue<int> myStack;
    };
    

      或:

     【两个队列】

    class Stack {
        queue<int> rev_q;
    public:
        // Push element x onto stack.
        void push(int x) {
            queue<int> temp_q;
            temp_q.push(x);
            while (!rev_q.empty()) {
                temp_q.push(rev_q.front());
                rev_q.pop();
            }
    
            rev_q = temp_q;
        }
    
        // Removes the element on top of the stack.
        void pop() {
            rev_q.pop();
        }
    
        // Get the top element.
        int top() {
            return rev_q.front();
        }
    
        // Return whether the stack is empty.
        bool empty() {
            return rev_q.empty();
        }
    };
    

    【一个队列】---push时直接添加到队尾就好。pop和top时,把队列除最后一个元素外,逐个循环添加到队列的尾部。

    class Stack {
    public:
        // Push element x onto stack.
        void push(int x) {
            unsigned int size = s.size();
            this->s.push(x);
            while (size--){
                s.push(s.front());
                s.pop();
                }
        }
    
        // Removes the element on top of the stack.
        void pop() {
            s.pop();
        }
    
        // Get the top element.
        int top() {
           return s.front(); 
        }
    
        // Return whether the stack is empty.
        bool empty() {
            return s.empty();
        }
    private:
        queue<int> s;
    };
    

      

     附注:队列queue的成员函数

    • empty()判断队列空,当队列空时,返回true。
    • size()访问队列中的元素个数。
    • push()会将一个元素置入queue中。
    • front()会返回queue内的第一个元素(也就是第一个被置入的元素)。
    • back()会返回queue中最后一个元素(也就是最后被插入的元素)。
    • pop()会从queue中移除一个元素。[1] 
    • 注意:pop()虽然会移除下一个元素,但是并不返回它,front()和back()返回下一个元素但并不移除该元素。

     

    二、Implement Queue using Stacks

    Implement the following operations of a queue using stacks.

    • push(x) -- Push element x to the back of queue.
    • pop() -- Removes the element from in front of queue.
    • peek() -- Get the front element.
    • empty() -- Return whether the queue is empty.

    Notes:

      • You must use only standard operations of a stack -- which means only push to toppeek/pop from topsize, and is empty operations are valid.
      • Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
      • You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).

     分析:

    class Queue {
    public:
          stack<int> stack1;
          stack<int> stack2;
        // Push element x to the back of queue.
        void push(int x) {
                stack1.push(x);
        }
    
        // Removes the element from in front of queue.
        void pop(void) {
            if(!stack2.empty()) stack2.pop();
            else{
            while(!stack1.empty()){
                    stack2.push(stack1.top());
                    stack1.pop();
                }
               stack2.pop();
            }
        }
    
        // Get the front element.
        int peek(void) {
            if(!stack2.empty()) return stack2.top();
            else{
            while(!stack1.empty()){
                    stack2.push(stack1.top());
                    stack1.pop();
                }
              return stack2.top();
            }
        }
    
        // Return whether the queue is empty.
        bool empty(void) {
            return stack1.empty() && stack2.empty();
        }
    };
    

    注:stack2.push(stack1.top())中若写成 stack2.push(stack1.pop())则会出错:invalid use of void expression 

     

    或:

    class Queue {
    public:
    stack<int> s1;
    stack<int> s2;
    // Push element x to the back of queue.
    void push(int x) {
        s1.push(x);
    
    }
    
    // Removes the element from in front of queue.
    void pop(void) {
        if(s1.empty())
            return;
        while(!s1.empty())  {
            s2.push(s1.top());     
            s1.pop();
        }
        s2.pop();
        while(!s2.empty()) {
            s1.push(s2.top());
            s2.pop();
        }
    }
    
    // Get the front element.
    int peek(void) {
        if(s1.empty())
            return -1;
         while(!s1.empty())  {
            s2.push(s1.top());
            s1.pop();
        }
        int t = s2.top();
        while(!s2.empty()) {
            s1.push(s2.top());
            s2.pop();
        }
        return t;
    }
    
    // Return whether the queue is empty.
    bool empty(void) {
        return s1.empty();
    }
    };
    

     可参考其他解法:

    我们做过一道相反的题目Implement Stack using Queues 用队列来实现栈。这道题颠倒了个顺序,起始并没有太大的区别,栈和队列的核心不同点就是栈是先进后出,而队列是先进先出,那么怎么用栈的先进后出的特性来表示出队列的先进先出呢?方法是:只要在插入元素的时候每次都从前面插入即可,即如果一个队列是1,2,3,4,那么就在栈中保存为4,3,2,1,那么返回栈顶元素1,即为队列的首元素。我们可以设置一个辅助栈tmp,把s的元素也逆着顺序存入tmp中,此时若加入新元素x,再把tmp中的元素倒回来。

    代码如下:

    class Queue {
    public:
        // Push element x to the back of queue.
        void push(int x) {
            stack<int> tmp;
            while (!s.empty()) {
                tmp.push(s.top());
                s.pop();
            }
            s.push(x);
            while (!tmp.empty()) {
                s.push(tmp.top());
                tmp.pop();
            }
        }
    
        // Removes the element from in front of queue.
        void pop(void) {
            s.pop();
        }
    
        // Get the front element.
        int peek(void) {
            return s.top();
        }
    
        // Return whether the queue is empty.
        bool empty(void) {
            return s.empty();
        }
    
    private:
        stack<int> s;
    };
    

      

     

     

  • 相关阅读:
    设计模式-代理模式
    设计模式-策略模式
    设计模式-单例模式
    优先队列
    n!中质因子个数
    计算组合数
    高精度
    memset用法
    质因子分解
    素数筛法
  • 原文地址:https://www.cnblogs.com/carsonzhu/p/4629910.html
Copyright © 2020-2023  润新知