• 图像拼接(image stitching)


    # OpenCV中stitching的使用

    OpenCV提供了高级别的函数封装在Stitcher类中,使用很方便,不用考虑太多的细节。

    低级别函数封装在detail命名空间中,展示了OpenCV算法实现的很多步骤和细节,使熟悉如下拼接流水线的用户,方便自己定制。

     可见OpenCV图像拼接模块的实现是十分精密和复杂的,拼接的结果很完善,但同时也是费时的,完全不能够实现实时应用。

    官方提供的stitching和stitching_detailed使用示例,分别是高级别和低级别封装这两种方式正确地使用示例。两种结果产生的拼接结果相同,后者却可以允许用户,在参数变量初始化时,选择各项算法。

    具体算法流程:

    1. 命令行调用程序,输入源图像以及程序的参数
    2. 特征点检测,判断是使用surf还是orb,默认是surf。
    3. 对图像的特征点进行匹配,使用最近邻和次近邻方法,将两个最优的匹配的置信度保存下来。
    4. 对图像进行排序以及将置信度高的图像保存到同一个集合中,删除置信度比较低的图像间的匹配,得到能正确匹配的图像序列。这样将置信度高于门限的所有匹配合并到一个集合中。
    5. 对所有图像进行相机参数粗略估计,然后求出旋转矩阵
    6. 使用光束平均法进一步精准的估计出旋转矩阵。
    7. 波形校正,水平或者垂直
    8. 拼接
    9. 融合,多频段融合,光照补偿,

    代码:

    #include "pch.h"
    #include <iostream>
    #include <fstream>
    #include <string>
    #include "opencv2/opencv_modules.hpp"
    #include <opencv2/core/utility.hpp>
    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/stitching/detail/autocalib.hpp"
    #include "opencv2/stitching/detail/blenders.hpp"
    #include "opencv2/stitching/detail/timelapsers.hpp"
    #include "opencv2/stitching/detail/camera.hpp"
    #include "opencv2/stitching/detail/exposure_compensate.hpp"
    #include "opencv2/stitching/detail/matchers.hpp"
    #include "opencv2/stitching/detail/motion_estimators.hpp"
    #include "opencv2/stitching/detail/seam_finders.hpp"
    #include "opencv2/stitching/detail/warpers.hpp"
    #include "opencv2/stitching/warpers.hpp"
    
    #ifdef HAVE_OPENCV_XFEATURES2D
    #include "opencv2/xfeatures2d/nonfree.hpp"
    #endif
    
    #define ENABLE_LOG 1
    #define LOG(msg) std::cout << msg
    #define LOGLN(msg) std::cout << msg << std::endl
    
    using namespace std;
    using namespace cv;
    using namespace cv::detail;
    
    static void printUsage()
    {
    	cout <<
    		"Rotation model images stitcher.
    
    "
    		"stitching_detailed img1 img2 [...imgN] [flags]
    
    "
    		"Flags:
    "
    		"  --preview
    "
    		"      Run stitching in the preview mode. Works faster than usual mode,
    "
    		"      but output image will have lower resolution.
    "
    		"  --try_cuda (yes|no)
    "
    		"      Try to use CUDA. The default value is 'no'. All default values
    "
    		"      are for CPU mode.
    "
    		"
    Motion Estimation Flags:
    "
    		"  --work_megapix <float>
    "
    		"      Resolution for image registration step. The default is 0.6 Mpx.
    "
    		"  --features (surf|orb|sift|akaze)
    "
    		"      Type of features used for images matching.
    "
    		"      The default is surf if available, orb otherwise.
    "
    		"  --matcher (homography|affine)
    "
    		"      Matcher used for pairwise image matching.
    "
    		"  --estimator (homography|affine)
    "
    		"      Type of estimator used for transformation estimation.
    "
    		"  --match_conf <float>
    "
    		"      Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.
    "
    		"  --conf_thresh <float>
    "
    		"      Threshold for two images are from the same panorama confidence.
    "
    		"      The default is 1.0.
    "
    		"  --ba (no|reproj|ray|affine)
    "
    		"      Bundle adjustment cost function. The default is ray.
    "
    		"  --ba_refine_mask (mask)
    "
    		"      Set refinement mask for bundle adjustment. It looks like 'x_xxx',
    "
    		"      where 'x' means refine respective parameter and '_' means don't
    "
    		"      refine one, and has the following format:
    "
    		"      <fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle
    "
    		"      adjustment doesn't support estimation of selected parameter then
    "
    		"      the respective flag is ignored.
    "
    		"  --wave_correct (no|horiz|vert)
    "
    		"      Perform wave effect correction. The default is 'horiz'.
    "
    		"  --save_graph <file_name>
    "
    		"      Save matches graph represented in DOT language to <file_name> file.
    "
    		"      Labels description: Nm is number of matches, Ni is number of inliers,
    "
    		"      C is confidence.
    "
    		"
    Compositing Flags:
    "
    		"  --warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)
    "
    		"      Warp surface type. The default is 'spherical'.
    "
    		"  --seam_megapix <float>
    "
    		"      Resolution for seam estimation step. The default is 0.1 Mpx.
    "
    		"  --seam (no|voronoi|gc_color|gc_colorgrad)
    "
    		"      Seam estimation method. The default is 'gc_color'.
    "
    		"  --compose_megapix <float>
    "
    		"      Resolution for compositing step. Use -1 for original resolution.
    "
    		"      The default is -1.
    "
    		"  --expos_comp (no|gain|gain_blocks|channels|channels_blocks)
    "
    		"      Exposure compensation method. The default is 'gain_blocks'.
    "
    		"  --expos_comp_nr_feeds <int>
    "
    		"      Number of exposure compensation feed. The default is 1.
    "
    		"  --expos_comp_nr_filtering <int>
    "
    		"      Number of filtering iterations of the exposure compensation gains.
    "
    		"      Only used when using a block exposure compensation method.
    "
    		"      The default is 2.
    "
    		"  --expos_comp_block_size <int>
    "
    		"      BLock size in pixels used by the exposure compensator.
    "
    		"      Only used when using a block exposure compensation method.
    "
    		"      The default is 32.
    "
    		"  --blend (no|feather|multiband)
    "
    		"      Blending method. The default is 'multiband'.
    "
    		"  --blend_strength <float>
    "
    		"      Blending strength from [0,100] range. The default is 5.
    "
    		"  --output <result_img>
    "
    		"      The default is 'result.jpg'.
    "
    		"  --timelapse (as_is|crop) 
    "
    		"      Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.
    "
    		"  --rangewidth <int>
    "
    		"      uses range_width to limit number of images to match with.
    ";
    }
    
    
    // Default command line args
    vector<String> img_names;
    bool preview = false;
    bool try_cuda = false;
    double work_megapix = 0.6;
    double seam_megapix = 0.1;
    double compose_megapix = -1;
    float conf_thresh = 1.f;
    #ifdef HAVE_OPENCV_XFEATURES2D
    string features_type = "surf";
    #else
    string features_type = "orb";
    #endif
    string matcher_type = "homography";
    string estimator_type = "homography";
    string ba_cost_func = "ray";
    string ba_refine_mask = "xxxxx";
    bool do_wave_correct = true;
    WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
    bool save_graph = false;
    std::string save_graph_to;
    string warp_type = "spherical";
    int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
    int expos_comp_nr_feeds = 1;
    int expos_comp_nr_filtering = 2;
    int expos_comp_block_size = 32;
    float match_conf = 0.3f;
    string seam_find_type = "gc_color";
    int blend_type = Blender::MULTI_BAND;
    int timelapse_type = Timelapser::AS_IS;
    float blend_strength = 5;
    string result_name = "F:/opencv/build/bin/sample-data/stitching/result.jpg";
    bool timelapse = false;
    int range_width = -1;
    
    
    int main(int argc, char* argv[])
    {
    #if ENABLE_LOG
    	int64 app_start_time = getTickCount();
    #endif
    
    #if 0
    	cv::setBreakOnError(true);
    #endif
    
    	img_names.push_back("F:/opencv/build/bin/sample-data/stitching/st1.jpg");
    	img_names.push_back("F:/opencv/build/bin/sample-data/stitching/st2.jpg");
    	img_names.push_back("F:/opencv/build/bin/sample-data/stitching/st3.jpg");
    	img_names.push_back("F:/opencv/build/bin/sample-data/stitching/st4.jpg");
    
    	// Check if have enough images
    	int num_images = static_cast<int>(img_names.size());
    	if (num_images < 2)
    	{
    		LOGLN("Need more images");
    		return -1;
    	}
    
    	double work_scale = 1, seam_scale = 1, compose_scale = 1;
    	bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
    
    	LOGLN("Finding features...");
    #if ENABLE_LOG
    	int64 t = getTickCount();
    #endif
    
    	Ptr<Feature2D> finder;
    	if (features_type == "orb")
    	{
    		finder = ORB::create();
    	}
    	else if (features_type == "akaze")
    	{
    		finder = AKAZE::create();
    	}
    #ifdef HAVE_OPENCV_XFEATURES2D
    	else if (features_type == "surf")
    	{
    		finder = xfeatures2d::SURF::create();
    	}
    	else if (features_type == "sift") {
    		finder = xfeatures2d::SIFT::create();
    	}
    #endif
    	else
    	{
    		cout << "Unknown 2D features type: '" << features_type << "'.
    ";
    		return -1;
    	}
    
    	cout << "Current 2D features type: '" << features_type << "'.
    ";
    
    	Mat full_img, img;
    	vector<ImageFeatures> features(num_images);
    	vector<Mat> images(num_images);
    	vector<Size> full_img_sizes(num_images);
    	double seam_work_aspect = 1;
    
    	for (int i = 0; i < num_images; ++i)
    	{
    		full_img = imread(samples::findFile(img_names[i]));
    		full_img_sizes[i] = full_img.size();
    
    		if (full_img.empty())
    		{
    			LOGLN("Can't open image " << img_names[i]);
    			return -1;
    		}
    		if (work_megapix < 0)
    		{
    			img = full_img;
    			work_scale = 1;
    			is_work_scale_set = true;
    		}
    		else
    		{
    			if (!is_work_scale_set)
    			{
    				work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
    				is_work_scale_set = true;
    			}
    			resize(full_img, img, Size(), work_scale, work_scale, INTER_LINEAR_EXACT);
    		}
    		if (!is_seam_scale_set)
    		{
    			seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
    			seam_work_aspect = seam_scale / work_scale;
    			is_seam_scale_set = true;
    		}
    
    		computeImageFeatures(finder, img, features[i]);
    		features[i].img_idx = i;
    		LOGLN("Features in image #" << i + 1 << ": " << features[i].keypoints.size());
    
    		resize(full_img, img, Size(), seam_scale, seam_scale, INTER_LINEAR_EXACT);
    		images[i] = img.clone();
    	}
    
    	full_img.release();
    	img.release();
    
    	LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    
    	LOG("Pairwise matching");
    #if ENABLE_LOG
    	t = getTickCount();
    #endif
    	vector<MatchesInfo> pairwise_matches;
    	Ptr<FeaturesMatcher> matcher;
    	if (matcher_type == "affine")
    		matcher = makePtr<AffineBestOf2NearestMatcher>(false, try_cuda, match_conf);
    	else if (range_width == -1)
    		matcher = makePtr<BestOf2NearestMatcher>(try_cuda, match_conf);
    	else
    		matcher = makePtr<BestOf2NearestRangeMatcher>(range_width, try_cuda, match_conf);
    
    	(*matcher)(features, pairwise_matches);
    	matcher->collectGarbage();
    
    	LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    
    	// Check if we should save matches graph
    	if (save_graph)
    	{
    		LOGLN("Saving matches graph...");
    		ofstream f(save_graph_to.c_str());
    		f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
    	}
    
    	// Leave only images we are sure are from the same panorama
    	vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
    	vector<Mat> img_subset;
    	vector<String> img_names_subset;
    	vector<Size> full_img_sizes_subset;
    	for (size_t i = 0; i < indices.size(); ++i)
    	{
    		img_names_subset.push_back(img_names[indices[i]]);
    		img_subset.push_back(images[indices[i]]);
    		full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
    	}
    
    	images = img_subset;
    	img_names = img_names_subset;
    	full_img_sizes = full_img_sizes_subset;
    
    	// Check if we still have enough images
    	num_images = static_cast<int>(img_names.size());
    	if (num_images < 2)
    	{
    		LOGLN("Need more images from the same panorama");
    		return -1;
    	}
    
    	Ptr<Estimator> estimator;
    	if (estimator_type == "affine")
    		estimator = makePtr<AffineBasedEstimator>();
    	else
    		estimator = makePtr<HomographyBasedEstimator>();
    
    	vector<CameraParams> cameras;
    	if (!(*estimator)(features, pairwise_matches, cameras))
    	{
    		cout << "Homography estimation failed.
    ";
    		return -1;
    	}
    
    	for (size_t i = 0; i < cameras.size(); ++i)
    	{
    		Mat R;
    		cameras[i].R.convertTo(R, CV_32F);
    		cameras[i].R = R;
    		LOGLN("Initial camera intrinsics #" << indices[i] + 1 << ":
    K:
    " << cameras[i].K() << "
    R:
    " << cameras[i].R);
    	}
    
    	Ptr<detail::BundleAdjusterBase> adjuster;
    	if (ba_cost_func == "reproj") adjuster = makePtr<detail::BundleAdjusterReproj>();
    	else if (ba_cost_func == "ray") adjuster = makePtr<detail::BundleAdjusterRay>();
    	else if (ba_cost_func == "affine") adjuster = makePtr<detail::BundleAdjusterAffinePartial>();
    	else if (ba_cost_func == "no") adjuster = makePtr<NoBundleAdjuster>();
    	else
    	{
    		cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.
    ";
    		return -1;
    	}
    	adjuster->setConfThresh(conf_thresh);
    	Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
    	if (ba_refine_mask[0] == 'x') refine_mask(0, 0) = 1;
    	if (ba_refine_mask[1] == 'x') refine_mask(0, 1) = 1;
    	if (ba_refine_mask[2] == 'x') refine_mask(0, 2) = 1;
    	if (ba_refine_mask[3] == 'x') refine_mask(1, 1) = 1;
    	if (ba_refine_mask[4] == 'x') refine_mask(1, 2) = 1;
    	adjuster->setRefinementMask(refine_mask);
    	if (!(*adjuster)(features, pairwise_matches, cameras))
    	{
    		cout << "Camera parameters adjusting failed.
    ";
    		return -1;
    	}
    
    	// Find median focal length
    
    	vector<double> focals;
    	for (size_t i = 0; i < cameras.size(); ++i)
    	{
    		LOGLN("Camera #" << indices[i] + 1 << ":
    K:
    " << cameras[i].K() << "
    R:
    " << cameras[i].R);
    		focals.push_back(cameras[i].focal);
    	}
    
    	sort(focals.begin(), focals.end());
    	float warped_image_scale;
    	if (focals.size() % 2 == 1)
    		warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
    	else
    		warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
    
    	if (do_wave_correct)
    	{
    		vector<Mat> rmats;
    		for (size_t i = 0; i < cameras.size(); ++i)
    			rmats.push_back(cameras[i].R.clone());
    		waveCorrect(rmats, wave_correct);
    		for (size_t i = 0; i < cameras.size(); ++i)
    			cameras[i].R = rmats[i];
    	}
    
    	LOGLN("Warping images (auxiliary)... ");
    #if ENABLE_LOG
    	t = getTickCount();
    #endif
    
    	vector<Point> corners(num_images);
    	vector<UMat> masks_warped(num_images);
    	vector<UMat> images_warped(num_images);
    	vector<Size> sizes(num_images);
    	vector<UMat> masks(num_images);
    
    	// Preapre images masks
    	for (int i = 0; i < num_images; ++i)
    	{
    		masks[i].create(images[i].size(), CV_8U);
    		masks[i].setTo(Scalar::all(255));
    	}
    
    	// Warp images and their masks
    
    	Ptr<WarperCreator> warper_creator;
    #ifdef HAVE_OPENCV_CUDAWARPING
    	if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
    	{
    		if (warp_type == "plane")
    			warper_creator = makePtr<cv::PlaneWarperGpu>();
    		else if (warp_type == "cylindrical")
    			warper_creator = makePtr<cv::CylindricalWarperGpu>();
    		else if (warp_type == "spherical")
    			warper_creator = makePtr<cv::SphericalWarperGpu>();
    	}
    	else
    #endif
    	{
    		if (warp_type == "plane")
    			warper_creator = makePtr<cv::PlaneWarper>();
    		else if (warp_type == "affine")
    			warper_creator = makePtr<cv::AffineWarper>();
    		else if (warp_type == "cylindrical")
    			warper_creator = makePtr<cv::CylindricalWarper>();
    		else if (warp_type == "spherical")
    			warper_creator = makePtr<cv::SphericalWarper>();
    		else if (warp_type == "fisheye")
    			warper_creator = makePtr<cv::FisheyeWarper>();
    		else if (warp_type == "stereographic")
    			warper_creator = makePtr<cv::StereographicWarper>();
    		else if (warp_type == "compressedPlaneA2B1")
    			warper_creator = makePtr<cv::CompressedRectilinearWarper>(2.0f, 1.0f);
    		else if (warp_type == "compressedPlaneA1.5B1")
    			warper_creator = makePtr<cv::CompressedRectilinearWarper>(1.5f, 1.0f);
    		else if (warp_type == "compressedPlanePortraitA2B1")
    			warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(2.0f, 1.0f);
    		else if (warp_type == "compressedPlanePortraitA1.5B1")
    			warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(1.5f, 1.0f);
    		else if (warp_type == "paniniA2B1")
    			warper_creator = makePtr<cv::PaniniWarper>(2.0f, 1.0f);
    		else if (warp_type == "paniniA1.5B1")
    			warper_creator = makePtr<cv::PaniniWarper>(1.5f, 1.0f);
    		else if (warp_type == "paniniPortraitA2B1")
    			warper_creator = makePtr<cv::PaniniPortraitWarper>(2.0f, 1.0f);
    		else if (warp_type == "paniniPortraitA1.5B1")
    			warper_creator = makePtr<cv::PaniniPortraitWarper>(1.5f, 1.0f);
    		else if (warp_type == "mercator")
    			warper_creator = makePtr<cv::MercatorWarper>();
    		else if (warp_type == "transverseMercator")
    			warper_creator = makePtr<cv::TransverseMercatorWarper>();
    	}
    
    	if (!warper_creator)
    	{
    		cout << "Can't create the following warper '" << warp_type << "'
    ";
    		return 1;
    	}
    
    	Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
    
    	for (int i = 0; i < num_images; ++i)
    	{
    		Mat_<float> K;
    		cameras[i].K().convertTo(K, CV_32F);
    		float swa = (float)seam_work_aspect;
    		K(0, 0) *= swa; K(0, 2) *= swa;
    		K(1, 1) *= swa; K(1, 2) *= swa;
    
    		corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
    		sizes[i] = images_warped[i].size();
    
    		warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
    	}
    
    	vector<UMat> images_warped_f(num_images);
    	for (int i = 0; i < num_images; ++i)
    		images_warped[i].convertTo(images_warped_f[i], CV_32F);
    
    	LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    
    	LOGLN("Compensating exposure...");
    #if ENABLE_LOG
    	t = getTickCount();
    #endif
    
    	Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
    	if (dynamic_cast<GainCompensator*>(compensator.get()))
    	{
    		GainCompensator* gcompensator = dynamic_cast<GainCompensator*>(compensator.get());
    		gcompensator->setNrFeeds(expos_comp_nr_feeds);
    	}
    
    	if (dynamic_cast<ChannelsCompensator*>(compensator.get()))
    	{
    		ChannelsCompensator* ccompensator = dynamic_cast<ChannelsCompensator*>(compensator.get());
    		ccompensator->setNrFeeds(expos_comp_nr_feeds);
    	}
    
    	if (dynamic_cast<BlocksCompensator*>(compensator.get()))
    	{
    		BlocksCompensator* bcompensator = dynamic_cast<BlocksCompensator*>(compensator.get());
    		bcompensator->setNrFeeds(expos_comp_nr_feeds);
    		bcompensator->setNrGainsFilteringIterations(expos_comp_nr_filtering);
    		bcompensator->setBlockSize(expos_comp_block_size, expos_comp_block_size);
    	}
    
    	compensator->feed(corners, images_warped, masks_warped);
    
    	LOGLN("Compensating exposure, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    
    	LOGLN("Finding seams...");
    #if ENABLE_LOG
    	t = getTickCount();
    #endif
    
    	Ptr<SeamFinder> seam_finder;
    	if (seam_find_type == "no")
    		seam_finder = makePtr<detail::NoSeamFinder>();
    	else if (seam_find_type == "voronoi")
    		seam_finder = makePtr<detail::VoronoiSeamFinder>();
    	else if (seam_find_type == "gc_color")
    	{
    #ifdef HAVE_OPENCV_CUDALEGACY
    		if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
    			seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR);
    		else
    #endif
    			seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR);
    	}
    	else if (seam_find_type == "gc_colorgrad")
    	{
    #ifdef HAVE_OPENCV_CUDALEGACY
    		if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
    			seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
    		else
    #endif
    			seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
    	}
    	else if (seam_find_type == "dp_color")
    		seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR);
    	else if (seam_find_type == "dp_colorgrad")
    		seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR_GRAD);
    	if (!seam_finder)
    	{
    		cout << "Can't create the following seam finder '" << seam_find_type << "'
    ";
    		return 1;
    	}
    
    	seam_finder->find(images_warped_f, corners, masks_warped);
    
    	LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    
    	// Release unused memory
    	images.clear();
    	images_warped.clear();
    	images_warped_f.clear();
    	masks.clear();
    
    	LOGLN("Compositing...");
    #if ENABLE_LOG
    	t = getTickCount();
    #endif
    
    	Mat img_warped, img_warped_s;
    	Mat dilated_mask, seam_mask, mask, mask_warped;
    	Ptr<Blender> blender;
    	Ptr<Timelapser> timelapser;
    	//double compose_seam_aspect = 1;
    	double compose_work_aspect = 1;
    
    	for (int img_idx = 0; img_idx < num_images; ++img_idx)
    	{
    		LOGLN("Compositing image #" << indices[img_idx] + 1);
    
    		// Read image and resize it if necessary
    		full_img = imread(samples::findFile(img_names[img_idx]));
    		if (!is_compose_scale_set)
    		{
    			if (compose_megapix > 0)
    				compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
    			is_compose_scale_set = true;
    
    			// Compute relative scales
    			//compose_seam_aspect = compose_scale / seam_scale;
    			compose_work_aspect = compose_scale / work_scale;
    
    			// Update warped image scale
    			warped_image_scale *= static_cast<float>(compose_work_aspect);
    			warper = warper_creator->create(warped_image_scale);
    
    			// Update corners and sizes
    			for (int i = 0; i < num_images; ++i)
    			{
    				// Update intrinsics
    				cameras[i].focal *= compose_work_aspect;
    				cameras[i].ppx *= compose_work_aspect;
    				cameras[i].ppy *= compose_work_aspect;
    
    				// Update corner and size
    				Size sz = full_img_sizes[i];
    				if (std::abs(compose_scale - 1) > 1e-1)
    				{
    					sz.width = cvRound(full_img_sizes[i].width * compose_scale);
    					sz.height = cvRound(full_img_sizes[i].height * compose_scale);
    				}
    
    				Mat K;
    				cameras[i].K().convertTo(K, CV_32F);
    				Rect roi = warper->warpRoi(sz, K, cameras[i].R);
    				corners[i] = roi.tl();
    				sizes[i] = roi.size();
    			}
    		}
    		if (abs(compose_scale - 1) > 1e-1)
    			resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT);
    		else
    			img = full_img;
    		full_img.release();
    		Size img_size = img.size();
    
    		Mat K;
    		cameras[img_idx].K().convertTo(K, CV_32F);
    
    		// Warp the current image
    		warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
    
    		// Warp the current image mask
    		mask.create(img_size, CV_8U);
    		mask.setTo(Scalar::all(255));
    		warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
    
    		// Compensate exposure
    		compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
    
    		img_warped.convertTo(img_warped_s, CV_16S);
    		img_warped.release();
    		img.release();
    		mask.release();
    
    		dilate(masks_warped[img_idx], dilated_mask, Mat());
    		resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT);
    		mask_warped = seam_mask & mask_warped;
    
    		if (!blender && !timelapse)
    		{
    			blender = Blender::createDefault(blend_type, try_cuda);
    			Size dst_sz = resultRoi(corners, sizes).size();
    			float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
    			if (blend_width < 1.f)
    				blender = Blender::createDefault(Blender::NO, try_cuda);
    			else if (blend_type == Blender::MULTI_BAND)
    			{
    				MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(blender.get());
    				mb->setNumBands(static_cast<int>(ceil(log(blend_width) / log(2.)) - 1.));
    				LOGLN("Multi-band blender, number of bands: " << mb->numBands());
    			}
    			else if (blend_type == Blender::FEATHER)
    			{
    				FeatherBlender* fb = dynamic_cast<FeatherBlender*>(blender.get());
    				fb->setSharpness(1.f / blend_width);
    				LOGLN("Feather blender, sharpness: " << fb->sharpness());
    			}
    			blender->prepare(corners, sizes);
    		}
    		else if (!timelapser && timelapse)
    		{
    			timelapser = Timelapser::createDefault(timelapse_type);
    			timelapser->initialize(corners, sizes);
    		}
    
    		// Blend the current image
    		if (timelapse)
    		{
    			timelapser->process(img_warped_s, Mat::ones(img_warped_s.size(), CV_8UC1), corners[img_idx]);
    			String fixedFileName;
    			size_t pos_s = String(img_names[img_idx]).find_last_of("/\");
    			if (pos_s == String::npos)
    			{
    				fixedFileName = "fixed_" + img_names[img_idx];
    			}
    			else
    			{
    				fixedFileName = "fixed_" + String(img_names[img_idx]).substr(pos_s + 1, String(img_names[img_idx]).length() - pos_s);
    			}
    			imwrite(fixedFileName, timelapser->getDst());
    		}
    		else
    		{
    			blender->feed(img_warped_s, mask_warped, corners[img_idx]);
    		}
    	}
    
    	if (!timelapse)
    	{
    		Mat result, result_mask;
    		blender->blend(result, result_mask);
    
    		LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    
    		imwrite(result_name, result);
    	}
    
    	LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
    	return 0;
    }  

    结果:

    Finding features...
    Current 2D features type: 'surf'.
    [ INFO:0] Initialize OpenCL runtime...
    Features in image #1: 911
    Features in image #2: 1085
    Features in image #3: 1766
    Features in image #4: 2001
    Finding features, time: 3.33727 sec
    Pairwise matchingPairwise matching, time: 3.2849 sec
    Initial camera intrinsics #1:
    K:
    [4503.939581818162, 0, 285;
     0, 4503.939581818162, 210;
     0, 0, 1]
    R:
    [1.0011346, 0.0019526235, -0.0037489906;
     0.00011878588, 1.0000151, -0.052518897;
     -0.0011389133, 0.021224562, 1]
    Initial camera intrinsics #2:
    K:
    [4503.939581818162, 0, 249;
     0, 4503.939581818162, 222;
     0, 0, 1]
    R:
    [1.0023992, 0.0045258515, 0.083801955;
     -9.7107059e-06, 1.0006112, -0.049870808;
     0.015923418, 0.048128795, 1.0000379]
    Initial camera intrinsics #3:
    K:
    [4503.939581818162, 0, 302.5;
     0, 4503.939581818162, 173.5;
     0, 0, 1]
    R:
    [1, 0, 0;
     0, 1, 0;
     0, 0, 1]
    Initial camera intrinsics #4:
    K:
    [4503.939581818162, 0, 274.5;
     0, 4503.939581818162, 194.5;
     0, 0, 1]
    R:
    [1.0004042, 0.00080040237, 0.078620218;
     0.00026136645, 1.0005095, -0.0048735617;
     0.0061902963, 0.0096427174, 1.0004393]
    Camera #1:
    K:
    [6569.821976030652, 0, 285;
     0, 6569.821976030652, 210;
     0, 0, 1]
    R:
    [0.99999672, 0.00038595949, -0.0025201384;
     -0.00047636221, 0.99935275, -0.035969362;
     0.0025046244, 0.035970442, 0.99934971]
    Camera #2:
    K:
    [6571.327169846625, 0, 249;
     0, 6571.327169846625, 222;
     0, 0, 1]
    R:
    [0.99835128, 0.0012797765, 0.057385404;
     0.00068109832, 0.99941689, -0.03413773;
     -0.05739563, 0.034120534, 0.99776828]
    Camera #3:
    K:
    [6570.486320822205, 0, 302.5;
     0, 6570.486320822205, 173.5;
     0, 0, 1]
    R:
    [1, -1.2951205e-09, 0;
     -1.2914825e-09, 1, 0;
     0, -4.6566129e-10, 1]
    Camera #4:
    K:
    [6571.394840241929, 0, 274.5;
     0, 6571.394840241929, 194.5;
     0, 0, 1]
    R:
    [0.99855018, -0.00018820527, 0.053829439;
     0.0003683792, 0.99999434, -0.0033372282;
     -0.053828511, 0.0033522192, 0.99854457]
    Warping images (auxiliary)...
    [ INFO:0] Successfully initialized OpenCL cache directory: C:UsersmzhuAppDataLocalTempopencv4.1opencl_cache
    [ INFO:0] Preparing OpenCL cache configuration for context: Intel_R__Corporation--Intel_R__HD_Graphics_620--21_20_16_4574
    Warping images, time: 0.0817463 sec
    Compensating exposure...
    Compensating exposure, time: 0.22982 sec
    Finding seams...
    Finding seams, time: 1.49795 sec
    Compositing...
    Compositing image #1
    Multi-band blender, number of bands: 5
    Compositing image #2
    Compositing image #3
    Compositing image #4
    Compositing, time: 0.705931 sec
    Finished, total time: 116.51 sec
    

      

    #  OpenPano:如何编写一个全景拼接器

    OpenPano: Automatic Panorama Stitching From Scratch (https://github.com/ppwwyyxx/OpenPano

    StitchIt: Optimization and Parallelization of Image Stitching  (https://github.com/stitchit/StitchIt

    ParaPano: Parallel image stitching using CUDA (https://github.com/zq-chen/ParaPano

    NISwGSP : Natural Image Stitching with the Global Similarity Prior (For Windows:https://github.com/firdauslubis88/NISwGSP,论文阅读笔记:https://zhuanlan.zhihu.com/p/57543736

    推荐:

     图像拼接现在还有研究的价值吗?有哪些可以研究的点?现在技术发展如何?

    Best Panorama Software for Stitching Images

    图像拼接算法的综述

  • 相关阅读:
    springboot 无法访问静态资源
    webrtc源码阅读理解一
    c++ include的顺序重要吗?
    简说yuv
    i420 转 nv21
    ffmpeg mp4 转 yuv、 y4m转yuv、mp4转y4m && ffplay 播放y4m、yuv
    mysql 查询json字符串条件
    Webpack4.X中sourcemap的配置 详解
    webpack如何打包生成的map文件不生效?
    vue中使用setInterval,移入暂停,移出继续
  • 原文地址:https://www.cnblogs.com/carsonzhu/p/11649414.html
Copyright © 2020-2023  润新知