• python pandas初体验


    1、
    # 输出系统当前时间now = datetime.now()print nowprint now.dayprint now.weekday()    # 有疑问  为何比真实时间晚一天?是因为时区问题?
    2、from datetime import date, time print time(3, 24)    # 3时24分
    3、"strptime" 方法可以根据需求形式解析用字符串表示的日期或时间字段。test_time = "2/20/09 16:03"print datetime.strptime(test_time, "%m/%d/%y %H:%M")      # 必须严格对照原格式, 感觉很不实用4、事实证明 "dateutil" 库中的日期解析器要远比 "strptime" 要强大得多
    from dateutil.parser import parse test_time_1 = "2/20/09 16:03"test_time_2 = "2009/2/20 16:03:01"test_time_3 = "2009-2-20 16:03:01"test_time_4 = "2009-2/20 16:03:01" print parse(test_time_1)print parse(test_time_2)print parse(test_time_3)print parse(test_time_4) # 输出结果2009-02-20 16:03:002009-02-20 16:03:012009-02-20 16:03:012009-02-20 16:03:01
    5、为了简单起见,Pandas提供了“to_datetime”方法来识别字符串形式的一整个序列,并将其转换为“datetime”对象。
    file = pd.read_csv(path)print pd.to_datetime(file.time)print pd.to_datetime([None])注:Pandas 中对于时间类型的缺失值有一个特定的值,“NaT”
    6、
    file = pd.read_csv(path, index_col=None)#print file.number    # 报错没有 number 属性?是因为使用它来作为 index_col 了?当 index_col 设定为 None 时可以正常输出print file.time7、unique 输出序列的元素,且重复值只输出一次(即去重)
    8、merge: 将两个 DataFrame 对象按键(key)合并
    merge的参数形式如下:
    pd.merge(left, right, how='inner', on=None, left_on=None, 
                          right_on=None, left_index=False,right_index=False, 
                                 sort=False, suffixes=('_x', '_y'), copy=True, indicator=False) 
    

      


    其中 : left : 数据框,right : 数据框 how : {'left', 'right', 'outer', 'inner'}, 默认值为 'inner'* left: 只使用left数据框的键值
    * right: 只使用right数据框的键值
    * outer: 使用两个数据框键值的并集
    * inner: 使用两个数据框键值的交集      
    # 当两个数据框有一个共同的列名时, 默认以该列的值作为合并时的键值df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(3) * 2, test3=range(20, 26)))print pd.merge(df1, df2)          # 默认以两个数据框的键值的交集为键值 # 输出结果 test1  test2  test30      0     10     201      0     10     232      1     11     213      1     11     244      2     12     225      2     12     25

    # 由于 merge 默认以两个数据框的键值的交集为键值, 故当交集为空时, 合并后的数据框也为空df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(10, 13) * 2, test3=range(20, 26)))print pd.merge(df1, df2)          # 默认以两个数据框的键值的交集为键值 # 输出结果Columns: [test1, test2, test3]Index: []# 当两个数据框有一个共同的列名时, 默认以该列的值作为合并时的键值
    df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(3) * 2, test3=range(20, 26)))print pd.merge(df1, df2, how="outer")
    

      

             # 以两个数据框的键值的并集为键值 # 输出结果 test1  test2  test30      0     10   20.01      0     10   23.02      1     11   21.03      1     11   24.04      2     12   22.05      2     12   25.06      3     13    NaNon: 取值为标签或列表 取值即为合并的字段,要求必须同时存在与被合并的数据框,如果取值为None,并且不按照索引合并时,函数就默认按照列的交集合并。

    # 当两个数据框有多个相同的列名时, 没被选择作为键的列名将会被系统标记为不同的列名df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(3) * 2, test2=range(10, 16), test3=range(20, 26)))print pd.merge(df1, df2, on="test1")          # 以 test1 为键 # 输出结果test1  test2_x  test2_y  test30      0       10       10     201      0       10       13     232      1       11       11     213      1       11       14     244      2       12       12     225      2       12       15     25或

    # 当两个数据框有多个相同的列名时, 没被选择作为键的列名将会被系统
    df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(3) * 2, test2=range(10, 16), test3=range(20, 26)))print pd.merge(df1, df2, on="test2")
    

      

             # 以 test2 为键 # 输出结果 test1_x  test2  test1_y  test30        0     10        0     201        1     11        1     212        2     12        2     223        3     13        0     23# 当两个数据框有多个相同的列名时, 可以选择多个列名作为键df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(3) * 2, test2=range(10, 16), test3=range(20, 26)))print pd.merge(df1, df2, on=["test1", "test2"])          # 以 test1, test2 为键 # 输出结果 test1  test2  test30      0     10     201      1     11     212      2     12     22

    left(right)_on: 取值为标签或列表或数组形式 left(right)数据框中用来合并的字段,可以是同数据框长度的向量或者向量列表,被用 来作为特别指定的合并键值。
    # 指定两个数据框中各自用于合并的列名
    df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(3) * 2, test2=range(10, 16), test3=range(20, 26)))print pd.merge(df1, df2, left_on="test1", right_on="test1")
    

      

             # 以 "test1" 为键 # 输出结果test1  test2_x  test2_y  test30      0       10       10     201      0       10       13     232      1       11       11     213      1       11       14     244      2       12       12     225      2       12       15     25
    left(right)_index:取值为布尔值,默认为False 使用left(right)数据框的索引作为合并键值,如果是多重索引,另一个数据框中键值的 数目必须和索引的层级相符。
    # 以行索引为键
    df1 = pd.DataFrame(dict(test1=range(4), test2=range(10, 14)))df2 = pd.DataFrame(dict(test1=range(3) * 2, test2=range(10, 16), test3=range(20, 26)))print pd.merge(df1, df2, left_index=True, right_index=True)   
    

      

          # 以行索引为键 # 输出结果test1_x  test2_x  test1_y  test2_y  test30        0       10        0       10     201        1       11        1       11     212        2       12        2       12     223        3       13        0       13     239、联结 Concatenation
    向一个已经固定行和列的数据集中分别添加行和列
    10、data.dtypes 可以知道各个列的属性
  • 相关阅读:
    201871010104-陈园园《面向对象程序设计(java)》课程学习总结
    201871010104-陈园园《面向对象程序设计(java)》第十七周学习总结
    201871010104-陈园园《面向对象程序设计(java)》第十六周学习总结
    201871010104-陈园园 《面向对象程序设计(java)》第十五周学习总结
    201871010104-陈园园 《面向对象程序设计(java)》第十四周学习总结
    201871010104-陈园园 《面向对象程序设计(java)》第十三周学习总结
    201871010105-曹玉中 实验四 团队作业1:软件研发团队组建
    201871010105-曹玉中 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告
    201871010105-曹玉中 实验二 个人项目—《背包问题》项目报告
    201871010105-曹玉中 实验一 软件工程准备——初识软件工程
  • 原文地址:https://www.cnblogs.com/c1q2s3/p/12391555.html
Copyright © 2020-2023  润新知