• 数据处理(超分辨率)


    一、 切片 24*24 和 96*96

    import os
    import random
    import cv2
    
    def crop_mod(img, scale):
        h,w = img.shape[0], img.shape[1]
        a = h%scale
        b = w%scale
        if len(img.shape)==2:
            img = img[0: h-a, 0:w-b]
        else:
            img = img[0:h-a, 0:w-b,:]
        return img
        
    
    nir_path = r'C:Users13141Desktoplow_nir_dataset
    ir'
    rgb_path = r'C:Users13141Desktoplow_nir_dataset
    gb'
    lr_path = r'C:Users13141Desktoplow_nir_datasetx4
    ir_lr'
    bic_path = r'C:Users13141Desktoplow_nir_datasetx4
    ir_bic'
    
    image_list = os.listdir(nir_path)
    image_list.sort()
    
    for i in range(len(image_list)):
        count = 1
        nir_img_path = os.path.join(nir_path, image_list[i])
        bic_img_path = os.path.join(bic_path, image_list[i])
        lr_img_path = os.path.join(lr_path, image_list[i])
        rgb_img_path = os.path.join(rgb_path, image_list[i].replace('nir','rgb'))
        
        nir_img = cv2.imread(nir_img_path,cv2.IMREAD_GRAYSCALE)
        bic_img = cv2.imread(bic_img_path,cv2.IMREAD_GRAYSCALE)
        lr_img = cv2.imread(lr_img_path,cv2.IMREAD_GRAYSCALE)
        rgb_img = cv2.imread(rgb_img_path)
    
        nir_img = crop_mod(nir_img, 4)
        rgb_img = crop_mod(rgb_img, 4)
        
        h,w = nir_img.shape[0], nir_img.shape[1]
        x_min = list(range(0, (h-96), 48))
        y_min = list(range(0, (w-96), 48))
    
        for xx in x_min:
            for yy in y_min:
                nir_pat = nir_img[xx:(xx+96), yy:(yy+96)]
                bic_pat = bic_img[xx:(xx+96), yy:(yy+96)]
                rgb_pat = rgb_img[xx:(xx+96), yy:(yy+96),:]
                xx_l = int(xx/4)
                yy_l = int(yy/4)
                lr_pat = lr_img[xx_l:(xx_l+24), yy_l:(yy_l+24)]
                
                count_0 = 5-len(str(count))
                image_name = image_list[i].split('.')[0]+'_'+'0'*count_0+str(count)+'.tiff'
                print(image_name)
                cv2.imwrite(os.path.join(r'C:Users13141Desktoplow_nir_datasetx4patches_24
    ir', 
                                         image_name), nir_pat)
                cv2.imwrite(os.path.join(r'C:Users13141Desktoplow_nir_datasetx4patches_24
    ir_bic', 
                                         image_name), bic_pat)
                cv2.imwrite(os.path.join(r'C:Users13141Desktoplow_nir_datasetx4patches_24
    ir_lr', 
                                         image_name), lr_pat)
                cv2.imwrite(os.path.join(r'C:Users13141Desktoplow_nir_datasetx4patches_24
    gb', 
                                         image_name), rgb_pat)
                count+=1

    二、 边缘提取Canny算子

    import os
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    path =r'C:Users13141Desktoplow_nir_datasetx4patches_24
    ir'
    
    img_list = os.listdir(path)
    
    count = 0
    img_del = []
    for i in range(len(img_list)):
        img_path = os.path.join(path, img_list[i])
        img = cv2.imread(img_path)
        img = cv2.GaussianBlur(img, (3,3), 0)
        canny1 = cv2.Canny(img,0,  55)
        l = canny1.sum()
    #   记录0边缘图像
        if l==0:
            print(img_list[i])
            img_del.append(img_list[i])
            count +=1
    #     plt.imshow(canny1, cmap='gray')
    #     plt.show()

    删除0边缘图像

    path =r'C:Users13141Desktoplow_nir_datasetx4patches_24
    ir'
    bic_path = r'C:Users13141Desktoplow_nir_datasetx4patches_24
    ir_bic'
    lr_path = r'C:Users13141Desktoplow_nir_datasetx4patches_24
    ir_lr'
    rgb_path=r'C:Users13141Desktoplow_nir_datasetx4patches_24
    gb'
    for i in img_del:
        os.remove(os.path.join(path, i))
        os.remove(os.path.join(bic_path, i))
        os.remove(os.path.join(lr_path, i))
        os.remove(os.path.join(rgb_path, i))

    三、 图像配准

    import numpy as np
    import cv2
    
    def sift_kp(image):
        if image.shape[2]==3:
            gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        else:
            gray_image = image
        sift = cv2.xfeatures2d.SIFT_create()
        kp, des = sift.detectAndCompute(image, None)
        kp_image = cv2.drawKeypoints(gray_image, kp, None)
        return kp_image, kp, des
    
    def get_good_match(des1, des2):
        bf = cv2.BFMatcher()
        matches = bf.knnMatch(des1, des2, k=2)
        good = []
        for m, n in matches:
            if m.distance<0.75*n.distance:
                good.append(m)
        return good
    
    def siftImageAlignment(img1, img2):
        _, kp1, des1 = sift_kp(img1)
        _, kp2, des2 = sift_kp(img2)
        goodMatch = get_good_match(des1, des2)
        if len(goodMatch) >4:
            ptsA = np.float32([kp1[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
            ptsB = np.float32([kp2[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
            ransacReprojThreshold = 4
            H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
            imgOut = cv2.warpPerspective(img2, H, (img1.shape[1], img1.shape[0]), flags=cv2.INTER_LINEAR+cv2.WARP_INVERSE_MAP)
        return imgOut, H, status
    
    img1 = cv2.imread(r'E:datasetsmultispectraldataRGB_NIRstereo4img2.png')
    img2 = cv2.imread(r'E:datasetsmultispectraldataRGB_NIRstereo4img1.png')
    while img1.shape[0]>1000 or img1.shape[1]>1000:
        img1 = cv2.resize(img1, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)
    while img2.shape[0]>1000 or img2.shape[1]>1000:
        img2 = cv2.resize(img2, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)
    
    print(img1.shape, img2.shape)
    result, _, _ = siftImageAlignment(img1, img2)
    allImage = np.concatenate((img1, img2, result), axis=1)

    import matplotlib.pyplot as plt
    plt.imshow(result)
    plt.show()

    四、 数据增强(Pytorch)

    def augment(*args, hflip=True, rot=True):
        hflip = hflip and random.random() < 0.5
        vflip = rot and random.random() < 0.5
        rot90 = rot and random.random() < 0.5
    
        def _augment(img):
            if hflip: img = img[:, ::-1, :].copy()
            if vflip: img = img[:, :, ::-1].copy()
            if rot90: img = img.transpose(0, 2, 1).copy()
            return img
    
        return [_augment(a) for a in args]
  • 相关阅读:
    【题解】Candle
    【题解】购物
    【题解】论逼格
    浅谈前缀和
    浅谈 LCA
    浅谈Meet in the middle——MITM
    拓扑排序
    时间复杂度符号
    浅谈排序算法[动图]
    404 页面不存在
  • 原文地址:https://www.cnblogs.com/btschang/p/11445076.html
Copyright © 2020-2023  润新知