• python MLP 神经网络使用 MinMaxScaler 没有 StandardScaler效果好


    MLP 64,2  preprocessing.MinMaxScaler().fit(X)
                                   test confusion_matrix:
    [[129293   2734]
     [   958  23375]]
                 precision    recall  f1-score   support

              0       0.99      0.98      0.99    132027
              1       0.90      0.96      0.93     24333

    avg / total       0.98      0.98      0.98    156360

    all confusion_matrix:
    [[646945  13384]
     [  4455 117015]]
                 precision    recall  f1-score   support

              0       0.99      0.98      0.99    660329
              1       0.90      0.96      0.93    121470

    avg / total       0.98      0.98      0.98    781799

    black verify confusion_matrix:
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
     0 0 0 0 0]
    /root/anaconda2/lib/python2.7/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.
      'recall', 'true', average, warn_for)
                 precision    recall  f1-score   support

              0       0.00      0.00      0.00         0
              1       1.00      0.07      0.13        42

    avg / total       1.00      0.07      0.13        42

    white verify confusion_matrix:
    [1 1 1 1 1 1 0]
                 precision    recall  f1-score   support

              0       1.00      0.14      0.25         7
              1       0.00      0.00      0.00         0

    avg / total       1.00      0.14      0.25         7

    unknown_verify:
    [1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1
     0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0]

     
     MLP 64,2 使用preprocessing.StandardScaler().fit(X)
     [[131850    180]
     [   230  24100]]
                 precision    recall  f1-score   support

              0       1.00      1.00      1.00    132030
              1       0.99      0.99      0.99     24330

    avg / total       1.00      1.00      1.00    156360

    all confusion_matrix:
    [[659500    829]
     [  1195 120275]]
                 precision    recall  f1-score   support

              0       1.00      1.00      1.00    660329
              1       0.99      0.99      0.99    121470

    avg / total       1.00      1.00      1.00    781799

    black verify confusion_matrix:
    [0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1
     0 0 0 1 1]
    /root/anaconda2/lib/python2.7/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.
      'recall', 'true', average, warn_for)
                 precision    recall  f1-score   support

              0       0.00      0.00      0.00         0
              1       1.00      0.62      0.76        42

    avg / total       1.00      0.62      0.76        42

    white verify confusion_matrix:
    [0 0 1 0 1 1 0]
                 precision    recall  f1-score   support

              0       1.00      0.57      0.73         7
              1       0.00      0.00      0.00         0

    avg / total       1.00      0.57      0.73         7

    unknown_verify:
    [1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0
     0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0]

    代码:

        from sklearn import preprocessing
        scaler = preprocessing.StandardScaler().fit(X)
        #scaler = preprocessing.MinMaxScaler().fit(X)
        X = scaler.transform(X)
        print("standard X sample:", X[:3])
    
        black_verify = scaler.transform(black_verify)
        print(black_verify)
    
        white_verify = scaler.transform(white_verify)
        print(white_verify)
    
        unknown_verify = scaler.transform(unknown_verify)
        print(unknown_verify)
    
        # ValueError: operands could not be broadcast together with shapes (756140,75) (42,75) (756140,75) 
        for i in range(20):
            X = np.concatenate((X, black_verify))
            y += black_verify_labels
    
    
        labels = ['white', 'CC']
        if True:
            # pdb.set_trace()
            ratio_of_train = 0.8
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(1 - ratio_of_train))
            # X_train=preprocessing.normalize(X_train)
            # X_test=preprocessing.normalize(X_test)
            clf = MLPClassifier(solver='sgd', batch_size=128, learning_rate='adaptive', max_iter=256,
                                hidden_layer_sizes=(64, 2), random_state=1)
    
            """
            clf = sklearn.ensemble.RandomForestClassifier(n_estimators=n_estimators, verbose=verbose, n_jobs=n_jobs,
                                                          random_state=random_state, oob_score=True)
            """
    
            clf.fit(X_train, y_train)
            print "test confusion_matrix:"
            # print clf.feature_importances_
            y_pred = clf.predict(X_test)
            print(sklearn.metrics.confusion_matrix(y_test, y_pred))
            print(classification_report(y_test, y_pred))
        else:
            #clf = pickle.loads(open("mpl-acc97-recall98.pkl", 'rb').read())
            clf = pickle.loads(open("mlp-add-topx10.model", 'rb').read())
            y_pred = clf.predict(X)
            print(sklearn.metrics.confusion_matrix(y, y_pred))
            print(classification_report(y, y_pred))
            import sys
            #sys.exit(0)
    
    
        print "all confusion_matrix:"
        y_pred = clf.predict(X)
        print(sklearn.metrics.confusion_matrix(y, y_pred))
        print(classification_report(y, y_pred))
    
  • 相关阅读:
    AutoCAD VBA 批量导出源代码
    cad.net 启动时候利用.arg配置文件
    c#datatable序列化xml
    阿里云ECS自建K8S集群
    禁止git提交时执行 npm run -s precommit
    级数法求圆周率
    适合小学生表演的节目--持续更新
    编程闯关游戏--太空罚款
    Dynamics CRM Fetch查询超过5000条数据
    关于升级至12cR2版本的Optimizer 自适应特性的设置建议
  • 原文地址:https://www.cnblogs.com/bonelee/p/9082014.html
Copyright © 2020-2023  润新知