• Android : Camera2/HAL3 框架分析


    一、Android O上的Treble机制:

      在 Android O 中,系统启动时,会启动一个 CameraProvider 服务,它是从 cameraserver 进程中分离出来,作为一个独立进程 android.hardware.camera.provider@2.4-service 用来控制 camera HAL,cameraserver通过 HIDL 机制于camera provider进行通信。HIDL源自于 Android O 版本加入的 Treble 机制,它的主要功能是将 service 与 HAL 隔离,以方便 HAL 部分进行独立升级,类似于 APP 与 Framework 之间的 Binder 通信机制,通过引入一个进程间通信机制而针对不同层级进行解耦(从 Local call 变成了 Remote call)。如下图:

          

      

     cameraserver 与 provider 这两个进程启动、初始化的调用逻辑,如下图:

          

    二、Camera HAL3的框架更新:

    • Application framework:用于给APP提供访问hardware的Camera API2,通过binder来访问camera service。
    • AIDL: 基于Binder实现的一个用于让App fw代码访问natice fw代码的接口。其实现存在于下述路径:frameworks/av/camera/aidl/android/hardware。其中:

        (1) ICameraService 是相机服务的接口。用于请求连接、添加监听等。
        (2) ICameraDeviceUser 是已打开的特定相机设备的接口。应用框架可通过它访问具体设备。
        (3) ICameraServiceListener 和 ICameraDeviceCallbacks 分别是从 CameraService 和 CameraDevice 到应用框架的回调。

    • Natice framework:frameworks/av/。提供了ICameraService、ICameraDeviceUser、ICameraDeviceCallbacks、ICameraServiceListener等aidl接口的实现。以及camera server的main函数。
    • Binder IPC interface:提供进程间通信的接口,APP和CameraService的通信、CameraService和HAL的通信。其中,AIDL、HIDL都是基于Binder实现的。
    • Camera Service:frameworks/av/services/camera/。同APP、HAL交互的服务,起到了承上启下的作用。
    • HAL:Google的HAL定义了可以让Camera Service访问的标准接口。对于供应商而言,必须要实现这些接口。

     

     1.Camera HAL3 构建连路的过程,如下图(红色虚线是上行路线,黑色虚线则是下行路线):

      

      2.从 App 到 CameraService的调用流程

      从 Application 连接到 CameraService,这涉及到 Android 架构中的三个层次:App 层,Framework 层,Runtime 层。其中,App 层直接调用 Framework 层所封装的方法,而 Framework 层需要通过 Binder 远程调用 Runtime 中 CameraService 的函数。
      这一部分主要的函数调用逻辑如下图所示:
      

     
      在 App 中,需要调用打开相机的API如下:

    • CameraCharacteristics:描述摄像头的各种特性,我们可以通过CameraManager的getCameraCharacteristics(@NonNull String cameraId)方法来获取。
    • CameraDevice:描述系统摄像头,类似于早期的Camera。
    • CameraCaptureSession:Session类,当需要拍照、预览等功能时,需要先创建该类的实例,然后通过该实例里的方法进行控制(例如:拍照 capture())。
    • CaptureRequest:描述了一次操作请求,拍照、预览等操作都需要先传入CaptureRequest参数,具体的参数控制也是通过CameraRequest的成员变量来设置。
    • CaptureResult:描述拍照完成后的结果。


      例如打开camera的java代码:

     mCameraManager.openCamera(currentCameraId, stateCallback, backgroundHandler);
      Camera2拍照流程如下所示:
      

      

     (1)Framework CameraManager :/frameworks/base/core/java/android/hardware/camera2/CameraManager.java

      最初的入口就是 CameraManager 的 openCamera 方法,但通过代码可以看到,它仅仅是调用了 openCameraForUid 方法。

    @RequiresPermission(android.Manifest.permission.CAMERA)
    public void openCamera(@NonNull String cameraId,
            @NonNull final CameraDevice.StateCallback callback, @Nullable Handler handler)
            throws CameraAccessException {
    
        openCameraForUid(cameraId, callback, handler, USE_CALLING_UID);
    }

      下面的代码忽略掉了一些参数检查相关操作,最终主要调用了 openCameraDeviceUserAsync 方法。

    public void openCameraForUid(@NonNull String cameraId,
            @NonNull final CameraDevice.StateCallback callback, @Nullable Handler handler,
            int clientUid)
            throws CameraAccessException {
        /* Do something in*/
        ......
        /* Do something out*/
        openCameraDeviceUserAsync(cameraId, callback, handler, clientUid);
    }

      参考如下注释分析:

    private CameraDevice openCameraDeviceUserAsync(String cameraId,
            CameraDevice.StateCallback callback, Handler handler, final int uid)
            throws CameraAccessException {
        CameraCharacteristics characteristics = getCameraCharacteristics(cameraId);
        CameraDevice device = null;
    
        synchronized (mLock) {
    
            ICameraDeviceUser cameraUser = null;
    
            android.hardware.camera2.impl.CameraDeviceImpl deviceImpl =   //实例化一个 CameraDeviceImpl。构造时传入了 CameraDevice.StateCallback 以及 Handler。
                    new android.hardware.camera2.impl.CameraDeviceImpl(  
                        cameraId,
                        callback,
                        handler,
                        characteristics,
                        mContext.getApplicationInfo().targetSdkVersion);
    
            ICameraDeviceCallbacks callbacks = deviceImpl.getCallbacks(); //获取 CameraDeviceCallback 实例,这是提供给远端连接到 CameraDeviceImpl 的接口。
    
           try {
                if (supportsCamera2ApiLocked(cameraId)) {  //HAL3 中走的是这一部分逻辑,主要是从 CameraManagerGlobal 中获取 CameraService 的本地接口,通过它远端调用(采用 Binder 机制) connectDevice 方法连接到相机设备。
                                    //注意返回的 cameraUser 实际上指向的是远端 CameraDeviceClient 的本地接口。
                    // Use cameraservice's cameradeviceclient implementation for HAL3.2+ devices
                    ICameraService cameraService = CameraManagerGlobal.get().getCameraService();
                    if (cameraService == null) {
                        throw new ServiceSpecificException(
                            ICameraService.ERROR_DISCONNECTED,
                            "Camera service is currently unavailable");
                    }
                    cameraUser = cameraService.connectDevice(callbacks, cameraId,
                            mContext.getOpPackageName(), uid);
                } else {
                    // Use legacy camera implementation for HAL1 devices
                    int id;
                    try {
                        id = Integer.parseInt(cameraId);
                    } catch (NumberFormatException e) {
                        throw new IllegalArgumentException("Expected cameraId to be numeric, but it was: "
                                + cameraId);
                    }
    
                    Log.i(TAG, "Using legacy camera HAL.");
                    cameraUser = CameraDeviceUserShim.connectBinderShim(callbacks, id);
                }
            } catch (ServiceSpecificException e) {
                /* Do something in */
                ......
                /* Do something out */
            }
    
            // TODO: factor out callback to be non-nested, then move setter to constructor
            // For now, calling setRemoteDevice will fire initial
            // onOpened/onUnconfigured callbacks.
            // This function call may post onDisconnected and throw CAMERA_DISCONNECTED if
            // cameraUser dies during setup.
            deviceImpl.setRemoteDevice(cameraUser); //将 CameraDeviceClient 设置到 CameraDeviceImpl 中进行管理。
            device = deviceImpl;
        }
    
        return device;
    }

     (2)CameraDeviceImpl : /frameworks/base/core/java/android/hardware/camera2/Impl/CameraDeviceImpl.java

      在继续向下分析打开相机流程之前,先简单看看调用到的 CameraDeviceImpl 中的setRemoteDevice 方法,主要是将获取到的远端设备保存起来:

    /**
     * Set remote device, which triggers initial onOpened/onUnconfigured callbacks
     *
     * <p>This function may post onDisconnected and throw CAMERA_DISCONNECTED if remoteDevice dies
     * during setup.</p>
     *
     */
    public void setRemoteDevice(ICameraDeviceUser remoteDevice) throws CameraAccessException {
        synchronized(mInterfaceLock) {
            // TODO: Move from decorator to direct binder-mediated exceptions
            // If setRemoteFailure already called, do nothing
            if (mInError) return;
    
            mRemoteDevice = new ICameraDeviceUserWrapper(remoteDevice); //通过 ICameraDeviceUserWrapper 给远端设备实例加上一层封装。
    
            IBinder remoteDeviceBinder = remoteDevice.asBinder(); //使用 Binder 机制的一些基本设置。
            // For legacy camera device, remoteDevice is in the same process, and
            // asBinder returns NULL.
            if (remoteDeviceBinder != null) {
                try {
                    remoteDeviceBinder.linkToDeath(this, /*flag*/ 0); //如果这个binder消失,为标志信息注册一个接收器。
                } catch (RemoteException e) {
                    CameraDeviceImpl.this.mDeviceHandler.post(mCallOnDisconnected);
    
                    throw new CameraAccessException(CameraAccessException.CAMERA_DISCONNECTED,
                            "The camera device has encountered a serious error");
                }
            }
    
            mDeviceHandler.post(mCallOnOpened); //需此处触发 onOpened 与 onUnconfigured 这两个回调,每个回调都是通过 mDeviceHandler 启用一个新线程来调用的。
            mDeviceHandler.post(mCallOnUnconfigured);
        }
    }

     (3)Runtime:通过 Binder 机制,我们远端调用了 connectDevice 方法(在 C++ 中称为函数,但说成方法可能更顺口一些),这个方法实现在 CameraService 类中。

     (4)CameraService:/frameworks/av/services/camera/libcameraservice/CameraService.cpp

    Status CameraService::connectDevice(
            const sp<hardware::camera2::ICameraDeviceCallbacks>& cameraCb,
            const String16& cameraId,
            const String16& clientPackageName,
            int clientUid,
            /*out*/
            sp<hardware::camera2::ICameraDeviceUser>* device) {
    
        ATRACE_CALL();
        Status ret = Status::ok();
        String8 id = String8(cameraId);
        sp<CameraDeviceClient> client = nullptr;
    
       //此处调用的 connectHelper 方法才真正实现了连接逻辑(HAL1 时最终也调用到这个方法)。需要注意的是,设定的模板类型是 ICameraDeviceCallbacks 以及 CameraDeviceClient。
        ret = connectHelper<hardware::camera2::ICameraDeviceCallbacks,CameraDeviceClient>(cameraCb, id,
                CAMERA_HAL_API_VERSION_UNSPECIFIED, clientPackageName,
                clientUid, USE_CALLING_PID, API_2,
                /*legacyMode*/ false, /*shimUpdateOnly*/ false,
                /*out*/client);
    
        if(!ret.isOk()) {
            logRejected(id, getCallingPid(), String8(clientPackageName),
                    ret.toString8());
            return ret;
        }
    
        *device = client; //client 指向的类型是 CameraDeviceClient,其实例则是最终的返回结果。
        return ret;
    }

      connectHelper 内容较多,忽略掉我们还无需关注的地方分析:

    template<class CALLBACK, class CLIENT>
    Status CameraService::connectHelper(const sp<CALLBACK>& cameraCb, const String8& cameraId,
            int halVersion, const String16& clientPackageName, int clientUid, int clientPid,
            apiLevel effectiveApiLevel, bool legacyMode, bool shimUpdateOnly,
            /*out*/sp<CLIENT>& device) {
        binder::Status ret = binder::Status::ok();
    
        String8 clientName8(clientPackageName);
    
        /* Do something in */
        ......
        /* Do something out */
    
            sp<BasicClient> tmp = nullptr;
            //调用 makeClient 生成 CameraDeviceClient 实例。
            if(!(ret = makeClient(this, cameraCb, clientPackageName, cameraId, facing, clientPid,
                    clientUid, getpid(), legacyMode, halVersion, deviceVersion, effectiveApiLevel,
                    /*out*/&tmp)).isOk()) {
                return ret;
            }
            //初始化 CLIENT 实例。注意此处的模板类型 CLIENT 即是 CameraDeviceClient,传入的参数 mCameraProviderManager 则是与 HAL service 有关。 
            client = static_cast<CLIENT*>(tmp.get());
    
            LOG_ALWAYS_FATAL_IF(client.get() == nullptr, "%s: CameraService in invalid state",
                    __FUNCTION__);
    
            err = client->initialize(mCameraProviderManager);
    
        /* Do something in */
        ......
        /* Do something out */
    
        // Important: release the mutex here so the client can call back into the service from its
        // destructor (can be at the end of the call)
        device = client;
        return ret;
    }    

      makeClient 主要是根据 API 版本以及 HAL 版本来选择生成具体的 Client 实例,Client 就沿着前面分析下来的路径返回到 CameraDeviceImpl 实例中,被保存到 mRemoteDevice。

    Status CameraService::makeClient(const sp<CameraService>& cameraService,
            const sp<IInterface>& cameraCb, const String16& packageName, const String8& cameraId,
            int facing, int clientPid, uid_t clientUid, int servicePid, bool legacyMode,
            int halVersion, int deviceVersion, apiLevel effectiveApiLevel,
            /*out*/sp<BasicClient>* client) {
    
        if (halVersion < 0 || halVersion == deviceVersion) {
            // Default path: HAL version is unspecified by caller, create CameraClient
            // based on device version reported by the HAL.
            switch(deviceVersion) {
              case CAMERA_DEVICE_API_VERSION_1_0:
                /* Do something in */
                ......
                /* Do something out */
              case CAMERA_DEVICE_API_VERSION_3_0:
              case CAMERA_DEVICE_API_VERSION_3_1:
              case CAMERA_DEVICE_API_VERSION_3_2:
              case CAMERA_DEVICE_API_VERSION_3_3:
              case CAMERA_DEVICE_API_VERSION_3_4:
                if (effectiveApiLevel == API_1) { // Camera1 API route
                    sp<ICameraClient> tmp = static_cast<ICameraClient*>(cameraCb.get());
                    *client = new Camera2Client(cameraService, tmp, packageName, cameraIdToInt(cameraId),
                            facing, clientPid, clientUid, servicePid, legacyMode);
                } else { // Camera2 API route : 实例化了 CameraDeviceClient 类作为 Client(注意此处构造传入了 ICameraDeviceCallbacks,这是连接到 CameraDeviceImpl 的远端回调)
                    sp<hardware::camera2::ICameraDeviceCallbacks> tmp =
                            static_cast<hardware::camera2::ICameraDeviceCallbacks*>(cameraCb.get());
                    *client = new CameraDeviceClient(cameraService, tmp, packageName, cameraId,
                            facing, clientPid, clientUid, servicePid);
                }
                break;
              default:
                // Should not be reachable
                ALOGE("Unknown camera device HAL version: %d", deviceVersion);
                return STATUS_ERROR_FMT(ERROR_INVALID_OPERATION,
                        "Camera device "%s" has unknown HAL version %d",
                        cameraId.string(), deviceVersion);
            }
        } else {
            /* Do something in */
            ......
            /* Do something out */
        }
        return Status::ok();
    }

      至此,打开相机流程中,从 App 到 CameraService 的调用逻辑基本上就算走完了。

      简图总结:

      

      Ps:

    • CameraManagerGlobal 是真正的实现层,它与 JAVA 层的 CameraService 创建连接,从而创建相机的连路。
    • CameraDeviceImpl 相当于运行上下文,它取代了 Android N 之前的 JNI 层。

     3.从 CameraService 到 HAL Service

      由于 Android O 中加入了 Treble 机制,CameraServer 一端主体为 CameraService,它将会寻找现存的 Provider service,将其加入到内部的 CameraProviderManager 中进行管理,相关操作都是通过远端调用进行的。
      而 Provider service 一端的主体为 CameraProvider,它在初始化时就已经连接到 libhardware 的 Camera HAL 实现层,并以 CameraModule 来进行管理。
      进程的启动后,连路的 “载体” 就搭建完成了(需要注意,此时 QCamera3HWI 还未创建),可用下图简单表示:
      

      

       而在打开相机时,该层的完整连路会被创建出来,主要调用逻辑如下图:

      

        上回讲到,在 CameraService::makeClient 中,实例化了一个 CameraDeviceClient。现在我们就从它的构造函数开始,继续探索打开相机的流程。
        这一部分主要活动在 Runtime 层,这里分成 CameraService 与 HAL Service 两侧来分析。


      (1)CameraDeviceClient :frameworksavservicescameralibcameraserviceapi2CameraDeviceClient.cpp

    CameraDeviceClient::CameraDeviceClient(const sp<CameraService>& cameraService,
            const sp<hardware::camera2::ICameraDeviceCallbacks>& remoteCallback,
            const String16& clientPackageName,
            const String8& cameraId,
            int cameraFacing,
            int clientPid,
            uid_t clientUid,
            int servicePid) :
        Camera2ClientBase(cameraService, remoteCallback, clientPackageName,
                    cameraId, cameraFacing, clientPid, clientUid, servicePid),  //继承它的父类 Camera2ClientBase 
        mInputStream(),
        mStreamingRequestId(REQUEST_ID_NONE),
        mRequestIdCounter(0),
        mPrivilegedClient(false) {
    
        char value[PROPERTY_VALUE_MAX];
        property_get("persist.camera.privapp.list", value, "");
        String16 packagelist(value);
        if (packagelist.contains(clientPackageName.string())) {
            mPrivilegedClient = true;
        }
    
        ATRACE_CALL();
        ALOGI("CameraDeviceClient %s: Opened", cameraId.string());
    }

      CameraService 在创建 CameraDeviceClient 之后,会调用它的初始化函数:

    //对外提供调用的初始化函数接口 initialize。
    status_t CameraDeviceClient::initialize(sp<CameraProviderManager> manager) {
        return initializeImpl(manager);
    }
    
    //初始化的具体实现函数,模板 TProviderPtr 在此处即是 CameraProviderManager 类。
    template<typename TProviderPtr>
    //首先将父类初始化,注意此处传入了 CameraProviderManager。
    status_t CameraDeviceClient::initializeImpl(TProviderPtr providerPtr) {
        ATRACE_CALL();
        status_t res;
    
        res = Camera2ClientBase::initialize(providerPtr);
        if (res != OK) {
            return res;
        }
    
        //这里是关于 FrameProcessor 的创建与初始化配置等等
        String8 threadName;
        mFrameProcessor = new FrameProcessorBase(mDevice);
        threadName = String8::format("CDU-%s-FrameProc", mCameraIdStr.string());
        mFrameProcessor->run(threadName.string());
    
        mFrameProcessor->registerListener(FRAME_PROCESSOR_LISTENER_MIN_ID,
                                          FRAME_PROCESSOR_LISTENER_MAX_ID,
                                          /*listener*/this,
                                          /*sendPartials*/true);
    
        return OK;
    }

       (2)Camera2ClientBase:frameworksavservicescameralibcameraservicecommonCamera2ClientBase.cpp

    template <typename TClientBase> //模板 TClientBase,在 CameraDeviceClient 继承 Camera2ClientBase 时被指定为 CameraDeviceClientBase。
    Camera2ClientBase<TClientBase>::Camera2ClientBase( //构造的相关参数,以及初始化列表,这里面需要注意 TCamCallbacks 在 CameraDeviceClientBase 中被指定为了 ICameraDeviceCallbacks。 
            const sp<CameraService>& cameraService,
            const sp<TCamCallbacks>& remoteCallback,
            const String16& clientPackageName,
            const String8& cameraId,
            int cameraFacing,
            int clientPid,
            uid_t clientUid,
            int servicePid):
            TClientBase(cameraService, remoteCallback, clientPackageName,
                    cameraId, cameraFacing, clientPid, clientUid, servicePid),
            mSharedCameraCallbacks(remoteCallback),
            mDeviceVersion(cameraService->getDeviceVersion(TClientBase::mCameraIdStr)),
            mDeviceActive(false)
    {
        ALOGI("Camera %s: Opened. Client: %s (PID %d, UID %d)", cameraId.string(),
                String8(clientPackageName).string(), clientPid, clientUid);
    
        mInitialClientPid = clientPid;
        mDevice = new Camera3Device(cameraId); //创建了一个 Camera3Device。
        LOG_ALWAYS_FATAL_IF(mDevice == 0, "Device should never be NULL here.");
    }

      回去再看看初始化函数:

    template <typename TClientBase> //初始化函数接口,真正的实现部分在 initializeImpl 中。
    status_t Camera2ClientBase<TClientBase>::initialize(sp<CameraProviderManager> manager) {
        return initializeImpl(manager);
    }
    
    //TClientBase 对应 CameraDeviceClientBase,而 TProviderPtr 对应的是 CameraProviderManager。
    template <typename TClientBase>
    template <typename TProviderPtr>
    status_t Camera2ClientBase<TClientBase>::initializeImpl(TProviderPtr providerPtr) {
        ATRACE_CALL();
        ALOGV("%s: Initializing client for camera %s", __FUNCTION__,
              TClientBase::mCameraIdStr.string());
        status_t res;
    
        // Verify ops permissions
        res = TClientBase::startCameraOps(); //调用 CameraDeviceClientBase 的 startCameraOps 方法,检查 ops 的权限。
        if (res != OK) {
            return res;
        }
    
        if (mDevice == NULL) {
            ALOGE("%s: Camera %s: No device connected",
                    __FUNCTION__, TClientBase::mCameraIdStr.string());
            return NO_INIT;
        }
    
        res = mDevice->initialize(providerPtr); //初始化 Camera3Device 的实例,注意此处传入了 CameraProviderManager。
        if (res != OK) {
            ALOGE("%s: Camera %s: unable to initialize device: %s (%d)",
                    __FUNCTION__, TClientBase::mCameraIdStr.string(), strerror(-res), res);
            return res;
        }
    
       //在 Camera3Device 实例中设置 Notify 回调。
        wp<CameraDeviceBase::NotificationListener> weakThis(this);
        res = mDevice->setNotifyCallback(weakThis);
    
        return OK;
    }

      (3)Camera3Device:frameworksavservicescameralibcameraservicedevice3Camera3Device.cpp

    Camera3Device::Camera3Device(const String8 &id):
            mId(id),
            mOperatingMode(NO_MODE),
            mIsConstrainedHighSpeedConfiguration(false),
            mStatus(STATUS_UNINITIALIZED),
            mStatusWaiters(0),
            mUsePartialResult(false),
            mNumPartialResults(1),
            mTimestampOffset(0),
            mNextResultFrameNumber(0),
            mNextReprocessResultFrameNumber(0),
            mNextShutterFrameNumber(0),
            mNextReprocessShutterFrameNumber(0),
            mListener(NULL),
            mVendorTagId(CAMERA_METADATA_INVALID_VENDOR_ID)
    {
        ATRACE_CALL();
      //在这个观察构造函数中设定了两个回调接口:
        camera3_callback_ops::notify = &sNotify;
        camera3_callback_ops::process_capture_result = &sProcessCaptureResult;
        ALOGV("%s: Created device for camera %s", __FUNCTION__, mId.string());
    }

      其初始化函数篇幅较长,这里省略掉了关于 RequestMetadataQueue 的相关操作。

    status_t Camera3Device::initialize(sp<CameraProviderManager> manager) {
        ATRACE_CALL();
        Mutex::Autolock il(mInterfaceLock);
        Mutex::Autolock l(mLock);
    
        ALOGV("%s: Initializing HIDL device for camera %s", __FUNCTION__, mId.string());
        if (mStatus != STATUS_UNINITIALIZED) {
            CLOGE("Already initialized!");
            return INVALID_OPERATION;
        }
        if (manager == nullptr) return INVALID_OPERATION;
    
        sp<ICameraDeviceSession> session;
        ATRACE_BEGIN("CameraHal::openSession");
        status_t res = manager->openSession(mId.string(), this, //调用CameraProviderManager的openSession方法,开启了远端的Session
                /*out*/ &session);
        ATRACE_END();
        if (res != OK) {
            SET_ERR_L("Could not open camera session: %s (%d)", strerror(-res), res);
            return res;
        }
    
        /* Do something in */
        ......
        /* Do something out */
    
        return initializeCommonLocked();
    }

      (4)CameraProviderManager:frameworksavservicescameralibcameraservicecommonCameraProviderManager.cpp

    status_t CameraProviderManager::openSession(const std::string &id,
            const sp<hardware::camera::device::V3_2::ICameraDeviceCallback>& callback,
            /*out*/
            sp<hardware::camera::device::V3_2::ICameraDeviceSession> *session) {
    
        std::lock_guard<std::mutex> lock(mInterfaceMutex);
    
        auto deviceInfo = findDeviceInfoLocked(id, //首先调用 findDeviceInfoLocked,获取 HAL3 相关的 DeviceInfo3
                /*minVersion*/ {3,0}, /*maxVersion*/ {4,0});
        if (deviceInfo == nullptr) return NAME_NOT_FOUND;
    
        auto *deviceInfo3 = static_cast<ProviderInfo::DeviceInfo3*>(deviceInfo);
    
        Status status;
        hardware::Return<void> ret;
       //通过远端调用 CameraDevice 的 open 方法,创建 CameraDeviceSession 实例并将其本地调用接口通过入参 session 返回。
        ret = deviceInfo3->mInterface->open(callback, [&status, &session]
                (Status s, const sp<device::V3_2::ICameraDeviceSession>& cameraSession) {
                    status = s;
                    if (status == Status::OK) {
                        *session = cameraSession;
                    }
                });
        if (!ret.isOk()) {
            ALOGE("%s: Transaction error opening a session for camera device %s: %s",
                    __FUNCTION__, id.c_str(), ret.description().c_str());
            return DEAD_OBJECT;
        }
        return mapToStatusT(status);
    }

      (5)CameraDevice:hardwareinterfacescameradevice3.2defaultCameraDevice.cpp

      CameraDevice 的实例实际上在初始化 HAL Service 之后就存在了。 前面说到,通过 CameraProviderManager 中的 deviceInfo 接口,调用远端 CameraDevice 实例open 方法,下面就来看看它的代码实现:

    Return<void> CameraDevice::open(const sp<ICameraDeviceCallback>& callback, open_cb _hidl_cb)  {
        Status status = initStatus();
        sp<CameraDeviceSession> session = nullptr;
    
        if (callback == nullptr) {
            ALOGE("%s: cannot open camera %s. callback is null!",
                    __FUNCTION__, mCameraId.c_str());
            _hidl_cb(Status::ILLEGAL_ARGUMENT, nullptr);
            return Void();
        }
    
        if (status != Status::OK) {
            /* Do something in */
            ......
            /* Do something out */
        } else {
            mLock.lock();
    
            /* Do something in */
            ......
            /* Do something out */
    
            /** Open HAL device */
            status_t res;
            camera3_device_t *device;
    
            ATRACE_BEGIN("camera3->open");
            res = mModule->open(mCameraId.c_str(), //注意 mModule 是在 HAL Service 初始化时就已经配置好的,它对从libhardware库中加载的 Camera HAL 接口进行了一层封装,从这里往下就会一路走到 QCamera3HWI 的构造流程去。
                    reinterpret_cast<hw_device_t**>(&device));
            ATRACE_END();
    
            /* Do something in */
            ......
            /* Do something out */
    
         //创建 session 并让内部成员 mSession 持有,具体实现的函数为 creatSession。
            session = createSession(
                    device, info.static_camera_characteristics, callback);
    
            /* Do something in */
            ......
            /* Do something out */
    
            mSession = session;
    
            IF_ALOGV() {
                session->getInterface()->interfaceChain([](
                    ::android::hardware::hidl_vec<::android::hardware::hidl_string> interfaceChain) {
                        ALOGV("Session interface chain:");
                        for (auto iface : interfaceChain) {
                            ALOGV("  %s", iface.c_str());
                        }
                    });
            }
            mLock.unlock();
        }
        _hidl_cb(status, session->getInterface());
        return Void();
    }

      而 creatSession 中直接创建了一个 CameraDeviceSession。当然在其构造函数中会调用内部的初始化函数,然后会进入 HAL 接口层 QCamera3HWI 的初始化流程,至此,从 CameraService 到 HAL Service 这一部分的打开相机流程就基本走通了。
      简图总结:

      

     4.从 HAL Service 到 Camera HAL

      在 HAL3 中,Camera HAL 的接口转化层(以及流解析层)由 QCamera3HardwareInterface 担当,而接口层与实现层与 HAL1 中基本没什么差别,都是在 mm_camera_interface.c 与 mm_camera.c 中。
      那么接口转化层的实例是何时创建的,又是怎么初始化的,创建它的时候,与接口层、实现层又有什么交互?通过下图展示的主要调用流程:

      

      

       (1)CameraModule(HAL Servic) : hardwareinterfacescameracommon1.0defaultCameraModule.cpp

        上回说到,CameraDevice::open 的实现中,调用了 mModule->open,即 CameraModule::open,通过代码来看,它做的事并不多,主要是调用 mModule->common.methods->open,来进入下一层级的流程。
        而这里则需要注意了,open 是一个函数指针,它指向的是 QCamera2Factory 的 camera_device_open 方法,至于为什么和 QCamera2Factory 有关,这就要回头看 HAL Service 的启动初始化流程了。

    int CameraModule::open(const char* id, struct hw_device_t** device) {
        int res;
        ATRACE_BEGIN("camera_module->open");
        res = filterOpenErrorCode(mModule->common.methods->open(&mModule->common, id, device));
        ATRACE_END();
        return res;
    }

      (2)QCamera2Factory(Camera HAL):hardwareqcomcameraqcamera2QCamera2Factory.cpp

    /*===========================================================================
     * FUNCTION   : camera_device_open
     *
     * DESCRIPTION: static function to open a camera device by its ID
     *
     * PARAMETERS :
     *   @camera_id : camera ID
     *   @hw_device : ptr to struct storing camera hardware device info
     *
     * RETURN     : int32_t type of status
     *              NO_ERROR  -- success
     *              none-zero failure code
     *==========================================================================*/
    int QCamera2Factory::camera_device_open(
        const struct hw_module_t *module, const char *id,
        struct hw_device_t **hw_device)
    {
        /* Do something in */
        ......
        /* Do something out */
    
    #ifdef QCAMERA_HAL1_SUPPORT //注意到这里通过宏定义添加了对 HAL1 的兼容操作。实际上是要调用 cameraDeviceOpen 来进行下一步操作。
        if(gQCameraMuxer)
            rc =  gQCameraMuxer->camera_device_open(module, id, hw_device);
        else
    #endif
            rc = gQCamera2Factory->cameraDeviceOpen(atoi(id), hw_device);
        return rc;
    }
    
    struct hw_module_methods_t QCamera2Factory::mModuleMethods = {
        .open = QCamera2Factory::camera_device_open, //这里就将前面所说的 open 函数指针指定为了 camera_device_open 这个方法。
    };

      cameraDeviceOpen 的工作:

    /*===========================================================================
     * FUNCTION   : cameraDeviceOpen
     *
     * DESCRIPTION: open a camera device with its ID
     *
     * PARAMETERS :
     *   @camera_id : camera ID
     *   @hw_device : ptr to struct storing camera hardware device info
     *
     * RETURN     : int32_t type of status
     *              NO_ERROR  -- success
     *              none-zero failure code
     *==========================================================================*/
    int QCamera2Factory::cameraDeviceOpen(int camera_id,
                        struct hw_device_t **hw_device)
    {
        /* Do something in */
        ......
        /* Do something out */
    
        if ( mHalDescriptors[camera_id].device_version == CAMERA_DEVICE_API_VERSION_3_0 ) {
            QCamera3HardwareInterface *hw = new QCamera3HardwareInterface(mHalDescriptors[camera_id].cameraId, //首先创建了 QCamera3HardwareInterface 的实例。
                    mCallbacks);
            if (!hw) {
                LOGE("Allocation of hardware interface failed");
                return NO_MEMORY;
            }
            rc = hw->openCamera(hw_device); //调用实例的 openCamera 方法。
            if (rc != 0) {
                delete hw;
            }
        }
    
        /* Do something in */
        ......
        /* Do something out */
    
        return rc;
    }

      (3)QCamera3HardwareInterface : hardwareqcomcameraqcamera2hal3QCamera3HWI.cpp

      首先需要注意的是内部成员 mCameraOps 的定义。 在构造实例时,有 mCameraDevice.ops = &mCameraOps;(关键点)

    camera3_device_ops_t QCamera3HardwareInterface::mCameraOps = {
        .initialize                         = QCamera3HardwareInterface::initialize,
        .configure_streams                  = QCamera3HardwareInterface::configure_streams,
        .register_stream_buffers            = NULL,
        .construct_default_request_settings = QCamera3HardwareInterface::construct_default_request_settings,
        .process_capture_request            = QCamera3HardwareInterface::process_capture_request,
        .get_metadata_vendor_tag_ops        = NULL,
        .dump                               = QCamera3HardwareInterface::dump,
        .flush                              = QCamera3HardwareInterface::flush,
        .reserved                           = {0},
    };

      再来继续看看 openCamera 实现:

    int QCamera3HardwareInterface::openCamera(struct hw_device_t **hw_device)
    {
        /* Do something in */
        ......
        /* Do something out */
    
        rc = openCamera(); //调用另一个 openCamera 方法,这是具体实现的部分。
        if (rc == 0) {
            *hw_device = &mCameraDevice.common; //打开相机成功后,将设备结构中的 common 部分通过双重指针 hw_device 返回。
        } else
            *hw_device = NULL;
    
        /* Do something in */
        ......
        /* Do something out */
        return rc;
    }
    
    int QCamera3HardwareInterface::openCamera()
    {
        /* Do something in */
        ......
        /* Do something out */
    
        rc = camera_open((uint8_t)mCameraId, &mCameraHandle);  //这里就开始进入接口层了,调用的是接口层中的 camera_open 接口。注意此处获取到了 mCameraHandle.
    
        /* Do something in */
        ......
        /* Do something out */
    
        rc = mCameraHandle->ops->register_event_notify(mCameraHandle->camera_handle, //注意这里传入了一个 camEvtHandle
                camEvtHandle, (void *)this);
    
        /* Do something in */
        ......
        /* Do something out */ 
    
        rc = mCameraHandle->ops->get_session_id(mCameraHandle->camera_handle, 
            &sessionId[mCameraId]);
    
        /* Do something in */
        ......
        /* Do something out */
    
        return NO_ERROR;
    }

      上面是接口转化层中,关于 openCamera 的部分,下面继续看看它的初始化函数。 在前面已经分析过,创建 CameraDeviceSession 实例时,会调用它内部的初始化方法,而这其中包含了调用 QCamera3HWI 的初始化方法 initialize

    int QCamera3HardwareInterface::initialize(const struct camera3_device *device,
                                      const camera3_callback_ops_t *callback_ops)
    {
        LOGD("E");
        QCamera3HardwareInterface *hw =
            reinterpret_cast<QCamera3HardwareInterface *>(device->priv);
        if (!hw) {
            LOGE("NULL camera device");
            return -ENODEV;
        }
    
        int rc = hw->initialize(callback_ops); //调用了真正实现的初始化逻辑的函数
        LOGD("X");
        return rc;
    }
    
    int QCamera3HardwareInterface::initialize(
            const struct camera3_callback_ops *callback_ops)
    {
        ATRACE_CALL();
        int rc;
    
        LOGI("E :mCameraId = %d mState = %d", mCameraId, mState);
        pthread_mutex_lock(&mMutex);
    
        // Validate current state
        switch (mState) {
            case OPENED:
                /* valid state */
                break;
            default:
                LOGE("Invalid state %d", mState);
                rc = -ENODEV;
                goto err1;
        }
    
        rc = initParameters(); //参数(mParameters)初始化,注意这里的参数和 CameraParameter 是不同的,它是 metadata_buffer 相关参数的结构。
        if (rc < 0) {
            LOGE("initParamters failed %d", rc);
            goto err1;
        }
        mCallbackOps = callback_ops; //这里将 camera3_call_back_ops 与 mCallbackOps 关联了起来。
    
        mChannelHandle = mCameraHandle->ops->add_channel( //获取 mChannelHandle 这一句柄,调用的方法实际是 mm_camera_interface.c 中的 mm_camera_intf_add_channel。
                mCameraHandle->camera_handle, NULL, NULL, this);
        if (mChannelHandle == 0) {
            LOGE("add_channel failed");
            rc = -ENOMEM;
            pthread_mutex_unlock(&mMutex);
            return rc;
        }
    
        pthread_mutex_unlock(&mMutex);
        mCameraInitialized = true;
        mState = INITIALIZED;
        LOGI("X");
        return 0;
    
    err1:
        pthread_mutex_unlock(&mMutex);
        return rc;
    }

      (4)mm_camera_interface.c(接口层) :hardwareqcomcameraqcamera2stackmm-camera-interfacesrcmm_camera_interface.c

        camera_open 中干的事也不多,省略掉了关于为 cam_obj 分配内存以及初始化的部分。实际上是调用实现层中的 mm_camera_open 来真正实现打开相机设备的操作,设备的各种信息都填充到 cam_obj 结构中。

    int32_t camera_open(uint8_t camera_idx, mm_camera_vtbl_t **camera_vtbl)
    {
        int32_t rc = 0;
        mm_camera_obj_t *cam_obj = NULL;
    
        /* Do something in */
        ......
        /* Do something out */
    
        rc = mm_camera_open(cam_obj);
    
        /* Do something in */
        ......
        /* Do something out */
    }

        而关于初始化时调用的 mm_camera_intf_add_channel 代码如下:

    static uint32_t mm_camera_intf_add_channel(uint32_t camera_handle,
                                               mm_camera_channel_attr_t *attr,
                                               mm_camera_buf_notify_t channel_cb,
                                               void *userdata)
    {
        uint32_t ch_id = 0;
        mm_camera_obj_t * my_obj = NULL;
    
        LOGD("E camera_handler = %d", camera_handle);
        pthread_mutex_lock(&g_intf_lock);
        my_obj = mm_camera_util_get_camera_by_handler(camera_handle);
    
        if(my_obj) {
            pthread_mutex_lock(&my_obj->cam_lock);
            pthread_mutex_unlock(&g_intf_lock);
            ch_id = mm_camera_add_channel(my_obj, attr, channel_cb, userdata); //通过调用实现层的 mm_camera_add_channel 来获取一个 channel id,也就是其句柄。
        } else {
            pthread_mutex_unlock(&g_intf_lock);
        }
        LOGD("X ch_id = %d", ch_id);
        return ch_id;
    }

      (5)mm_camera.c(实现层) :hardwareqcomcameraqcamera2stackmm-camera-interfacesrcmm_camera.c

       终于来到最底层的实现了,mm_camera_open 主要工作是填充 my_obj,并且启动、初始化一些线程相关的东西,关于线程的部分我这里就省略掉了。

    int32_t mm_camera_open(mm_camera_obj_t *my_obj)
    {
        char dev_name[MM_CAMERA_DEV_NAME_LEN];
        int32_t rc = 0;
        int8_t n_try=MM_CAMERA_DEV_OPEN_TRIES;
        uint8_t sleep_msec=MM_CAMERA_DEV_OPEN_RETRY_SLEEP;
        int cam_idx = 0;
        const char *dev_name_value = NULL;
        int l_errno = 0;
        pthread_condattr_t cond_attr;
    
        LOGD("begin
    ");
    
        if (NULL == my_obj) {
            goto on_error;
        }
        dev_name_value = mm_camera_util_get_dev_name(my_obj->my_hdl); //此处调用的函数是为了获取 my_obj 的句柄,这里不深入分析。
        if (NULL == dev_name_value) {
            goto on_error;
        }
        snprintf(dev_name, sizeof(dev_name), "/dev/%s",
                 dev_name_value);
        sscanf(dev_name, "/dev/video%d", &cam_idx);
        LOGD("dev name = %s, cam_idx = %d", dev_name, cam_idx);
    
        do{
            n_try--;
            errno = 0;
            my_obj->ctrl_fd = open(dev_name, O_RDWR | O_NONBLOCK); //读取设备文件的文件描述符,存到 my_obj->ctrl_fd 中。
            l_errno = errno;
            LOGD("ctrl_fd = %d, errno == %d", my_obj->ctrl_fd, l_errno);
            if((my_obj->ctrl_fd >= 0) || (errno != EIO && errno != ETIMEDOUT) || (n_try <= 0 )) {
                break;
            }
            LOGE("Failed with %s error, retrying after %d milli-seconds",
                  strerror(errno), sleep_msec);
            usleep(sleep_msec * 1000U);
        }while (n_try > 0);
    
        if (my_obj->ctrl_fd < 0) {
            LOGE("cannot open control fd of '%s' (%s)
    ",
                      dev_name, strerror(l_errno));
            if (l_errno == EBUSY)
                rc = -EUSERS;
            else
                rc = -1;
            goto on_error;
        } else {
            mm_camera_get_session_id(my_obj, &my_obj->sessionid); //成功获取到文件描述符后,就要获取 session 的 id 了。
            LOGH("Camera Opened id = %d sessionid = %d", cam_idx, my_obj->sessionid);
        }
    
        /* Do something in */
        ......
        /* Do something out */
    
        /* unlock cam_lock, we need release global intf_lock in camera_open(),
         * in order not block operation of other Camera in dual camera use case.*/
        pthread_mutex_unlock(&my_obj->cam_lock);
        return rc;
    }

      初始化的相关部分,mm_camera_add_channel 代码如下:

    uint32_t mm_camera_add_channel(mm_camera_obj_t *my_obj,
                                   mm_camera_channel_attr_t *attr,
                                   mm_camera_buf_notify_t channel_cb,
                                   void *userdata)
    {
        mm_channel_t *ch_obj = NULL;
        uint8_t ch_idx = 0;
        uint32_t ch_hdl = 0;
    
       //从现有的 Channel 中找到第一个状态为 NOTUSED 的,获取到 ch_obj 中
        for(ch_idx = 0; ch_idx < MM_CAMERA_CHANNEL_MAX; ch_idx++) {
            if (MM_CHANNEL_STATE_NOTUSED == my_obj->ch[ch_idx].state) {
                ch_obj = &my_obj->ch[ch_idx];
                break;
            }
        }
    
      /*初始化 ch_obj 结构。首先调用 mm_camera_util_generate_handler 为其生成一个句柄(也是该函数的返回值),
       *然后将状态设置为 STOPPED,注意这里还保存了 my_obj 的指针及其 session id,最后调用 mm_channel_init 完成了 Channel 的初始化。*/
        if (NULL != ch_obj) {
            /* initialize channel obj */
            memset(ch_obj, 0, sizeof(mm_channel_t));
            ch_hdl = mm_camera_util_generate_handler(ch_idx);
            ch_obj->my_hdl = ch_hdl;
            ch_obj->state = MM_CHANNEL_STATE_STOPPED;
            ch_obj->cam_obj = my_obj;
            pthread_mutex_init(&ch_obj->ch_lock, NULL);
            ch_obj->sessionid = my_obj->sessionid;
            mm_channel_init(ch_obj, attr, channel_cb, userdata);
        }
    
        pthread_mutex_unlock(&my_obj->cam_lock);
    
        return ch_hdl;
    }

      简图总结:

        总而言之,上面这一顿操作下来后,相机从上到下的整个连路就已经打通,接下来应该只要 APP 按照流程下发 Preview 的 Request 就可以开始获取预览数据了。

    三、核心概念:Request

      request是贯穿camera2数据处理流程最为重要的概念,应用框架是通过向camera子系统发送request来获取其想要的result。
      request有下述几个重要特征:

    •     一个request可以对应一系列的result。
    •     request应当包含所有必要的配置信息,存放于metadata中。如:分辨率和像素格式;sensor、镜头、闪光等的控制信息;3A 操作模式;RAW 到 YUV 处理控件;以及统计信息的生成等。
    •     request需要携带对应的surface(也就是框架里面的stream),用于接收返回的图像。
    •     多个request可以同时处于in-flight状态,并且submit request是non-blocking方式的。也就是说,上一个request没有处理完,也可以submit新的request。
    •     队列中request的处理总是按照FIFO的形式。
    •     snapshot的request比preview的request拥有更高的优先级。

     1.request的整体处理流程如下图:
      

      

    open 流程(黑色箭头线条)
        CameraManager注册AvailabilityCallback回调,用于接收相机设备的可用性状态变更的通知。
        CameraManager通过调用getCameraIdList()获取到当前可用的camera id,通过getCameraCharacteristcs()函数获取到指定相机设备的特性。
        CameraManager调用openCamera()打开指定相机设备,并返回一个CameraDevice对象,后续通过该CameraDevice对象操控具体的相机设备。
        使用CameraDevice对象的createCaptureSession()创建一个session,数据请求(预览、拍照等)都是通过session进行。在创建session时,需要提供Surface作为参数,用于接收返回的图像。
    
    configure stream流程(蓝色箭头线条)
        申请Surface,如上图的OUTPUT STREAMS DESTINATIONS框,用于在创建session时作为参数,接收session返回的图像。
        创建session后,surface会被配置成框架的stream。在框架中,stream定义了图像的size及format。
        每个request都需要携带target surface用于指定返回的图像是归属到哪个被configure的stream的。
    
    request处理流程(橙色箭头线条)
        CameraDevice对象通过createCaptureRequest()来创建request,每个reqeust都需要有surface和settings(settings就是metadata,request包含的所有配置信息都是放在metadata中的)。
        使用session的capture()、captureBurst()、setStreamingRequest()、setStreamingBurst()等api可以将request发送到框架。
        预览的request,通过setStreamingRequest()、setStreamingBurst()发送,仅调用一次。将request set到repeating request list里面。只要pending request queue里面没有request,就将repeating list里面的request copy到pending queue里面。
        拍照的request,通过capture()、captureBurst()发送,每次需要拍照都会调用。每次触发,都会直接将request入到pending request queue里面,所以拍照的request比预览的request的优先级更高。
        in-progress queue代表当前正在处理的request的queue,每处理完一个,都会从pending queue里面拿出来一个新的request放到这里。
    
    数据返回流程(紫色箭头线条)
        硬件层面返回的数据会放到result里面返回,会通过session的capture callback回调响应。

     2.request在HAL的处理方式

      (1)framework发送异步的request到hal。
      (2)hal必须顺序处理request,对于每一个request都要返回timestamp(shutter,也就是帧的生成时间)、metadata、image buffers。
      (3)对于request引用的每一类steam,必须按FIFO的方式返回result。比如:对于预览的stream,result id 9必须要先于result id 10返回。但是拍照的stream,当前可以只返回到result id 7,因为拍照和预览用的stream不一样。
      (4)hal需要的信息都通过request携带的metadata接收,hal需要返回的信息都通过result携带的metadata返回。

      HAL处理request的整体流程如下图。
      

      

    request处理流程(黑色箭头线条)
        framework异步地submit request到hal,hal依次处理,并返回result。
        每个被submit到hal的request都必须携带stream。stream分为input stream和output stream:input stream对应的buffer是已有图像数据的buffer,hal对这些buffer进行reprocess;output stream对应的buffer是empty buffer,hal将生成的图像数据填充的这些buffer里面。
    
    input stream处理流程(图像的INPUT STREAM 1
        request携带input stream及input buffer到hal。
        hal进行reprocess,然后新的图像数据重新填充到buffer里面,返回到framework。
    
    output stream处理流程(图像的OUTPUT STREAM 1…N)
        request携带output stream及output buffer到hal。
        hal经过一系列模块的的处理,将图像数据写到buffer中,返回到frameowork。

    -end-

  • 相关阅读:
    1029 旧键盘 (20 分)C、Java、python
    1028 人口普查 (20 分)C语言
    1027 打印沙漏 (20 分)C语言
    luoguP2709 小B的询问
    luoguP2709 小B的询问
    bzoj5016 [Snoi2017]一个简单的询问
    bzoj5016 [Snoi2017]一个简单的询问
    luoguP1972 [SDOI2009]HH的项链(莫队)
    luoguP1972 [SDOI2009]HH的项链(莫队)
    Tyvj1091
  • 原文地址:https://www.cnblogs.com/blogs-of-lxl/p/10651611.html
Copyright © 2020-2023  润新知