• POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)


    Description

    A rooted tree is a well-known data structure in computer science and engineering. An example is shown below: 

     
    In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

    For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. 

    Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

    Output

    Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

    Sample Input

    2
    16
    1 14
    8 5
    10 16
    5 9
    4 6
    8 4
    4 10
    1 13
    6 15
    10 11
    6 7
    10 2
    16 3
    8 1
    16 12
    16 7
    5
    2 3
    3 4
    3 1
    1 5
    3 5
    

    Sample Output

    4
    3
    
    
    
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<limits.h>
    #include<vector>
    typedef long long LL;
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    const int maxn=10005;
    int n,uu,vv;
    vector<int>v[maxn];
    int pre[maxn],vis[maxn];
    bool root[maxn];
    int find_root(int x)
    {
        if(pre[x]!=x)
            x=find_root(pre[x]);
        return pre[x];
    }
    void Union(int x,int y)
    {
        x=find_root(x);
        y=find_root(y);
        if(x!=y)   pre[y]=x;
    }
    void LCA(int x)
    {
        for(int i=0;i<v[x].size();i++)
        {
            LCA(v[x][i]);
            Union(x,v[x][i]);
        }
        vis[x]=1;
        if(x==uu&&vis[vv]==1)
        {
            printf("%d
    ",find_root(vv));
            return ;
        }
        if(x==vv&&vis[uu]==1)
        {
            printf("%d
    ",find_root(uu));
            return ;
        }
    }
    void init()
    {
        REP(i,maxn)
        {
            v[i].clear();
            pre[i]=i;
            root[i]=true;
            vis[i]=0;
        }
    }
    void solve()
    {
        REPF(i,1,n)
        {
            if(root[i]==true)
            {
                LCA(i);
                break;
            }
        }
    //   for(int i=1;i<=n;i++)
    //        printf("222222  %d
    ",pre[i]);
    }
    int main()
    {
        int t,a,b;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            init();
            REPF(i,1,n-1)
            {
                scanf("%d%d",&a,&b);
                v[a].push_back(b);
                root[b]=false;
            }
            scanf("%d%d",&uu,&vv);
            solve();
        }
        return 0;
    }
    



  • 相关阅读:
    吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)
    吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(续六)
    吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(续五)
    吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(续四)
    MaxCompute安全管理指南-案例篇
    MaxCompute安全管理指南-基础篇
    发光的二次元——克拉克拉上云实践
    使用应用程序(Java/Python)访问MaxCompute Lightning进行数据开发
    Sentinel 发布里程碑版本,添加集群流控功能
    高效开发 Dubbo?用 Spring Boot 可得劲!
  • 原文地址:https://www.cnblogs.com/blfshiye/p/5075233.html
Copyright © 2020-2023  润新知