• ZOJ3827 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江I称号 Information Entropy 水的问题


    Information Entropy

    Time Limit: 2 Seconds      Memory Limit: 131072 KB      Special Judge

    Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

    Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.

    Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

    Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2, ..., xn} and probability mass functionP(X) as:

    H(X)=E(ln(P(x)))

    Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

    H(X)=i=1nP(xi)log b(P(xi))

    Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e, and dit (or digit) for b = 10 respectively.

    In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

    0log b(0)=limp0+plog b(p)

    Your task is to calculate the entropy of a finite sample with N values.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

    In the next line, there are N non-negative integers P1P2, .., PNPi means the probability of the i-th value in percentage and the sum of Pi will be 100.

    Output

    For each test case, output the entropy in the corresponding unit.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    3
    3 bit
    25 25 50
    7 nat
    1 2 4 8 16 32 37
    10 dit
    10 10 10 10 10 10 10 10 10 10
    

    Sample Output

    1.500000000000
    1.480810832465
    1.000000000000
    
    
        牡丹江赛区的第二道签到题。难度不大,基本A题通过后全部人I题也開始非常快通过,题目看起来非常难理解,可是一旦看懂事实上发现这事实上就是一道英文题。题目就是给一堆序列。然后给n个数a1,a2...an。然后对每一个数字求出(ai/sum)*log(ai/sum)的总和,当bit是,log以2为底,当nat时,log以e为底,当dit时。log以10为底,之后计算证明当ai=0时,对结果无影响,所以能够直接忽略,然后直接带入计算就可以AC此题~~~详细AC代码例如以下:
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<cstdlib>
    #include<algorithm>
    #include<map>
    #include<vector>
    #include<queue>
    using namespace std;
    int a[105];
    int main()
    {
     //   freopen("in.txt","r",stdin);
        int t;
        cin>>t;
        while(t--)
        {
            int n;
            string s;
            scanf("%d",&n);
            cin>>s;
            int sum=0;
            for(int i=0;i<n;i++)
            {
                scanf("%d",&a[i]);
                sum+=a[i];
            }
            double res=0;
            if(s=="bit")
            {
                for(int i=0;i<n;i++)
                {
                    if(a[i]==0)
                        continue;
                    double p1=-log2(a[i]*1.0/sum)*a[i]/sum;
                    res+=p1;
                }
            }
            else if(s=="nat")
            {
                for(int i=0;i<n;i++)
                {
                    if(a[i]==0)
                        continue;
                    double p1=-log(a[i]*1.0/sum)*a[i]/sum;
                    res+=p1;
                }
            }
            else
            {
                for(int i=0;i<n;i++)
                {
                    if(a[i]==0)
                        continue;
                    double p1=-log10(a[i]*1.0/sum)*a[i]/sum;
                    res+=p1;
                }
            }
            printf("%.12f
    ",res);
        }
        return 0;
    }


    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    windows下 文件资源管理器 的操作
    Visual Studio Code 折叠代码快捷键
    windows 10 取消alt+tab的预览功能
    String.prototype.replace
    Webpack的tapable 为什么要使用 new Funtion 来生成静态代码
    Visual Studio Code 断点调试Nodejs程序跳过node内部模块(internal modules)
    【社群话题分享】有哪些奇葩的技术人员考核方式?
    工信部要求应用商店上新 App 检查 IPv6,这里有一份 IPv6 快速部署指南
    读完这篇文章,5G 就没有秘密了
    双剑合璧——掌握 cURL 和 Dig 走天涯
  • 原文地址:https://www.cnblogs.com/blfshiye/p/4616031.html
Copyright © 2020-2023  润新知