[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)
题面
阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn,他不希望准考证号上出现不吉利的数字。他的不吉利数学A1A2…Am有M位,不出现是指X1X2…Xn中没有恰好一段等于A1A2…Am. A1和X1可以为0
(0 leq X_i leq 9,0leq Aileq 9,m leq 20,n leq 10^9)
分析
先考虑暴力的思路,设(dp[i][j])表示前i位数与不吉利数字匹配了前j位的方案数
那么(dp[i][f(j,c)]=sum dp[i-1][j] (c in[0,9]))
实际上就是从0~9枚举第i位的数字,然后更新匹配的位数。其中(f(j,c))表示加入数字c后的匹配位数。
但是(n leq 10^9),直接dp显然会超时,发现每层转移都是一样的,所以可以矩阵快速幂优化
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 1000
#define maxm 20
using namespace std;
typedef long long ll;
char t[maxm+5];
int nex[maxm+5];
void get_nex(char *a){
int len=strlen(a+1);
for(int i=2,j=0;i<=len;i++){
while(j>0&&a[j+1]!=a[i]) j=nex[j];
if(a[j+1]==a[i]) j++;
nex[i]=j;
}
}
int n,m,mod;
int match(int j,char c){
while(j>0&&t[j+1]!=c) j=nex[j];
if(t[j+1]==c) j++;
return j;
}
struct matrix{
ll x[maxn+5][maxn+5];
void set(int p){
if(p==0){
for(int i=0;i<m;i++) for(int j=0;j<m;j++) x[i][j]=0;
}else{
for(int i=0;i<m;i++) for(int j=0;j<m;j++) x[i][j]=0;
for(int i=0;i<m;i++) x[i][i]=1;
}
}
void print(){
for(int i=0;i<m;i++){
for(int j=0;j<m;j++){
printf("%lld ",x[i][j]);
}
printf("
");
}
}
friend matrix operator * (matrix a,matrix b){
matrix ans;
ans.set(0);
for(int i=0;i<m;i++){
for(int j=0;j<m;j++){
for(int k=0;k<m;k++){
ans.x[i][j]+=a.x[i][k]*b.x[k][j]%mod;
ans.x[i][j]%=mod;
}
}
}
return ans;
}
};
matrix fast_pow(matrix x,int k){
matrix ans;
ans.set(1);
while(k){
if(k&1) ans=ans*x;
x=x*x;
k>>=1;
}
return ans;
}
int main(){
scanf("%d %d %d",&n,&m,&mod);
scanf("%s",t+1);
get_nex(t);
// dp[0][0]=1;
// for(int i=1;i<=n;i++){
// for(int j=0;j<m;j++){
// for(char ch='0';ch<='9';ch++){
// int k=match(j,ch);
// dp[i][k]+=dp[i-1][j];
// dp[i][k]%=mod;
// }
// }
// }
matrix tp,ans;
tp.set(0);
for(int j=0;j<m;j++){
for(char ch='0';ch<='9';ch++){
int k=match(j,ch);
tp.x[j][k]++;
}
}
// tp.print();
ans=fast_pow(tp,n);
// ans.print();
ll res=0;
for(int j=0;j<m;j++){
res+=ans.x[0][j];
res%=mod;
}
printf("%lld
",res);
}