题目大意:求出n位十进制数中每相邻三位均为一个三位数素数的个数对10^9+9取模的值。
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
数据规模:3<=n<=10000。
理论基础:无。
题目分析:1万位,不会是高精度吧?Come on,孩子,别忘了这道题的分类是dp。好了,言归正传。
首先,我们用dp[i][j][k]表示i位十进制数中满足要求的且最高位为j,次高位为k的数的个数。bool数组pre[i][j][k]表示三位分别为ijk时是不是素数。
然后,初始化,很显然,dp[3][j][k]=sum(pre[j][k][m],1<=m<=9)。
下来,我们可以很轻易的得出状态转移方程:dp[i][j][k]=sum(pre[j][k][m]*dp[i-1][k][m],1<=m<=9)对10^9+9取模。
最终的答案即为:ans=sum(dp[n][j][k],0<=k<=9,0<j<=9)对10^9+9取模。
代码如下:
#include<iostream> #include<cstring> #include<string> #include<cstdlib> #include<cstdio> #include<cmath> #include<algorithm> #include<queue> #include<ctime> #include<vector> using namespace std; typedef double db; #define DBG 0 #define maa (1<<31) #define mii ((1<<31)-1) #define ast(b) if(DBG && !(b)) { printf("%d!!| ", __LINE__); while(1) getchar(); } //调试 #define dout DBG && cout << __LINE__ << ">>| " #define pr(x) #x"=" << (x) << " | " #define mk(x) DBG && cout << __LINE__ << "**| "#x << endl #define pra(arr, a, b) if(DBG) { dout<<#arr"[] |" <<endl; for(int i=a,i_b=b;i<=i_b;i++) cout<<"["<<i<<"]="<<arr[i]<<" |"<<((i-(a)+1)%8?" ":" "); if((b-a+1)%8) puts(""); } template<class T> inline bool updateMin(T& a, T b) { return a>b? a=b, true: false; } template<class T> inline bool updateMax(T& a, T b) { return a<b? a=b, true: false; } typedef long long LL; typedef long unsigned int LU; typedef long long unsigned int LLU; #define N 10000 #define M 10 int dp[N+1][M][M],n; bool pre[M][M][M]={ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1, 0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0, 0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,1, 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0, 0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1, 0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0, 0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0, 0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0, 0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1, 0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1, 0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1, 0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0, 0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0, 0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0, 0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0, 0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0}; int nprime[143]={101, 103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199, 211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317, 331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443, 449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577, 587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701, 709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839, 853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983, 991,997}; int main() { while(~scanf("%d",&n)) { memset(dp,0,sizeof dp); for(int i=0;i<=142;i++) { dp[3][nprime[i]/100][nprime[i]/10%10]++; } for(int i=4;i<=n;i++) { for(int j=1;j<=9;j++) { for(int k=0;k<=9;k++) { for(int l=1;l<=9;l+=2) { if(pre[j][k][l])dp[i][j][k]=(dp[i-1][k][l]+dp[i][j][k])%1000000009; } } } } int ans=0; for(int j=1;j<=9;j++) { for(int k=0;k<=9;k++) { ans=(ans+dp[n][j][k])%1000000009; } } printf("%d ",ans); } return 0; }
其中,pre[i][j][k]的初始化可以依靠nprime[]数组得到。
by:Jsun_moon http://blog.csdn.net/jsun_moon