刷水题涨信心
显然这是个广义容斥,我们现在算一下至少有(i)个完美数的方案数就好了
这(1000)的数据范围显然在暗示(n^2)的dp
我们注意到这个条件大概就是(P_i=i-1)或(P_i=i+1),于是我们可以想象成左右两边各(n)个点去完成一个一一匹配
设(dp[i][j][k][p])表示左边第(i)个数已经匹配完了,一共形成了(j)对完美数,(k)表示右边对应的第(i)个位置的使用状态(0/1),(p)表示右边第(i+1)个数的使用状态
转移显然
代码
#include<cstdio>
#define re register
const int mod=1e9+7;
const int maxn=1005;
int n,m,tot;
int dp[maxn][maxn][2][2],ans[maxn];
int c[maxn][maxn],fac[maxn];
int main() {
scanf("%d%d",&n,&m);fac[0]=1;
for(re int i=0;i<=n;i++) c[i][0]=c[i][i]=1;
for(re int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mod;
for(re int i=2;i<=n;i++)
for(re int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
dp[1][0][0][0]=1,dp[1][1][0][1]=1;
for(re int i=1;i<n;i++)
for(re int j=0;j<=i;j++)
for(re int k=0;k<2;k++)
for(re int p=0;p<2;p++) {
if(!dp[i][j][k][p]) continue;
dp[i+1][j+1][p][1]=(dp[i+1][j+1][p][1]+dp[i][j][k][p])%mod;
if(!k) dp[i+1][j+1][p][0]=(dp[i+1][j+1][p][0]+dp[i][j][k][p])%mod;
dp[i+1][j][p][0]=(dp[i+1][j][p][0]+dp[i][j][k][p])%mod;
}
for(re int i=0;i<=n;i++)
ans[i]=(dp[n][i][0][0]+dp[n][i][1][0])%mod;
for(re int j=m;j<=n;j++)
tot=(tot+1ll*((j-m)&1?-1:1)*c[j][m]*fac[n-j]%mod*ans[j]%mod)%mod;
printf("%d
",(tot+mod)%mod);
return 0;
}