• CSU-1163 寒衣调


    CSU-1163 寒衣调

    Description

    男从戎,女守家。一夜,狼烟四起,男战死沙场。从此一道黄泉,两地离别。最后,女终于在等待中老去逝去。逝去的最后是换尽一生等到的相逢和团圆。

    某日两人至奈何桥前,服下孟婆汤。

    每滴孟婆汤都有强度不一的药效,设一碗孟婆汤共N滴(0<N<100000),其中第i滴(0≤i<N)用b[i]表示。

    孟婆汤的药效与原料有关,设熬制前同样有N滴原料,第i滴原料用a[i]表示,0≤a[i]<2^32。

    药效b[i]的计算方法为b[i]=(a[0]a[1]...*a[N-1]/a[i])%m(假设0/0=1),0<b[i]<2^32。

    Input

    每行开头给出原料数量N,取模数m,紧接着的一行按顺序给出原料a[i]。求出熬制所成孟婆汤的药效b[i],每次输完一碗孟婆汤的药效后以换行结尾。

    Output

    求出熬制所成孟婆汤的药效b[i],每碗孟婆汤后以换行结尾。

    Sample Input

    5 11
    2 7 5 3 9
    3 7
    9 8 5
    

    Sample Output

    10 6 4 3 1
    5 3 2
    

    题解

    此题用不能用费马小定理求乘法逆元,因为没有说a[i]和m是互质的,不过这个题数据有些问题逆元也能过不过常数要小一点,否则会TLE

    此题正解是维护一个前缀的乘积pre,一个后缀的乘积last,对于每一个a[i],假如a[i]为0则输出1否则输出pre[i - 1] * last[i + 1] % m

    #include<bits/stdc++.h>
    #define ll long long
    #define maxn 100050
    using namespace std;
    ll n, p;
    ll a[maxn];
    ll pre[maxn], last[maxn];
    int main() {
    	while (scanf("%lld%lld", &n, &p) != EOF) {
    		pre[0] = last[n + 1] = 1;
    		for (int i = 1; i <= n; i++) {
    			scanf("%lld", &a[i]);
    			pre[i] = (pre[i - 1] % p * a[i] % p) % p;
    		}
    		for (int i = n; i >= 1; i--) {
    			last[i] = (last[i + 1] % p * a[i] % p) % p;
    		}
    		for (int i = 1; i <= n; i++) {
    			a[i] == 0 ? printf("1 ") : printf("%lld ", (pre[i - 1] % p * last[i + 1] % p) % p);
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    VMware安装CentOS6.8
    YouZack英语学习网站,英语四六级的福音
    WIN7环境下配置vscode c++环境
    连续出现的字符
    丛林中的路
    兔子与樱花
    C++语言基础--02_运算符
    C++语言基础--01_合法标识符与基本数据类型
    C++语言基础--0_前言
    字符串笔试题
  • 原文地址:https://www.cnblogs.com/artoriax/p/10349121.html
Copyright © 2020-2023  润新知