• UVA11248Frequency Hopping(最大流)


    刘汝佳新书--训练指南

    题意:给定一个有向网络,每条边均有一个容量。问是否存在一个从点1到点N,流量为C的流。如果不存在,是否可以恰好修改一条弧的容量,使得存在这样的流?

    分析:先求一次最大流,如果流量至少为C,则直接输出possible,否则需要修改的弧一定是最小割里的弧。依次把这些弧的容量增加到C,然后再求最大流,看最大流量是否至少为C即可。
    很可惜,这样写出来的程序会超时,还需要加两个重要的优化。第一个优化是求完最大流后把流量留着,以后每次在它的基础上增广,第二个优化是每次没必要求出最大流,增广到流量至少为C时就停下来。

    // File Name: dinic.cpp
    // Author: zlbing
    // Created Time: 2013/3/2 16:55:44
    
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdlib>
    #include<cstdio>
    #include<set>
    #include<map>
    #include<vector>
    #include<cstring>
    #include<stack>
    #include<cmath>
    #include<queue>
    using namespace std;
    #define CL(x,v); memset(x,v,sizeof(x));
    #define INF 0x3f3f3f3f
    #define LL long long
    #define MAXN 110
    struct Edge{
        int from,to,cap,flow;
    };
    bool cmp(const Edge& a,const Edge& b){
        return a.from < b.from || (a.from == b.from && a.to < b.to);
    }
    struct Dinic{
        int n,m,s,t;
        vector<Edge> edges;
        vector<int> G[MAXN];
        bool vis[MAXN];
        int d[MAXN];
        int cur[MAXN];
        void init(int n){
            this->n=n;
            for(int i=0;i<=n;i++)G[i].clear();
            edges.clear();
        }
        void AddEdge(int from,int to,int cap){
            edges.push_back((Edge){from,to,cap,0});
            edges.push_back((Edge){to,from,0,0});
            m=edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
        bool BFS(){
            CL(vis,0);
            queue<int> Q;
            Q.push(s);
            d[s]=0;
            vis[s]=1;
            while(!Q.empty()){
                int x=Q.front();
                Q.pop();
                for(int i=0;i<G[x].size();i++){
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to]&&e.cap>e.flow){
                        vis[e.to]=1;
                        d[e.to]=d[x]+1;
                        Q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
        int DFS(int x,int a){
            if(x==t||a==0)return a;
            int flow=0,f;
            for(int& i=cur[x];i<G[x].size();i++){
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                    e.flow+=f;
                    edges[G[x][i]^1].flow-=f;
                    flow+=f;
                    a-=f;
                    if(a==0)break;
                }
            }
            return flow;
        }
        int Maxflow(int s,int t,int need){
            this->s=s;this->t=t;
            int flow=0;
            while(BFS()){
                CL(cur,0);
                flow+=DFS(s,INF);
                if(flow>need)return flow;
            }
            return flow;
        }
        //最小割割边
        vector<int> Mincut(){
            BFS();
            vector<int> ans;
            for(int i=0;i<edges.size();i++){
                Edge& e=edges[i];
                if(vis[e.from]&&!vis[e.to]&&e.cap>0)ans.push_back(i);
            }
            return ans;
        }
        void Reduce(){
            for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
        }
        void ClearFlow(){
            for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
        }
    };
    Dinic solver;
    int main(){
        int N,E,C,cas=0;
        while(~scanf("%d%d%d",&N,&E,&C))
        {
            if(!N)break;
            solver.init(N);
            int a,b,c;
            while(E--)
            {
                scanf("%d%d%d",&a,&b,&c);
                solver.AddEdge(a,b,c);
            }
            int flow=solver.Maxflow(1,N,INF);
            printf("Case %d: ",++cas);
            if(flow>C)printf("possible\n");
            else{
                vector<int> cut=solver.Mincut();
                solver.Reduce();
                vector<Edge>ans;
                for(int i=0;i<cut.size();i++){
                    Edge& e=solver.edges[cut[i]];
                    int temp=e.cap;
                    e.cap=C;
                    solver.ClearFlow();
                    if(flow+solver.Maxflow(1,N,C-flow)>=C)ans.push_back(e);
                    e.cap=temp;
                }
                if(ans.empty())printf("not possible\n");
                else{
                    sort(ans.begin(),ans.end(),cmp);
                    printf("possible option:(%d,%d)",ans[0].from,ans[0].to);
                    for(int i=1;i<ans.size();i++)
                        printf(",(%d,%d)",ans[i].from,ans[i].to);
                    printf("\n");
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    主要工业以太网性能横向比较
    聊一聊工业以太网
    FPGA学习之RoadMap
    我眼中的FPGA
    板级通信总线之SPI及其Verilog实现
    ALTERA FPGA中实现低于时钟周期的端口延时
    Javascript 闭包浅析(一)
    node.js docker centos7 下环境构建命令
    ruby sass 命令
    如何配置nginx的反向代理nodes 3000端口项目
  • 原文地址:https://www.cnblogs.com/arbitrary/p/2941101.html
Copyright © 2020-2023  润新知