• Find K Pairs with Smallest Sums


    You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.
    
    Define a pair (u,v) which consists of one element from the first array and one element from the second array.
    
    Find the k pairs (u1,v1),(u2,v2) ...(uk,vk) with the smallest sums.
    
    Example 1:
    Given nums1 = [1,7,11], nums2 = [2,4,6],  k = 3
    
    Return: [1,2],[1,4],[1,6]
    
    The first 3 pairs are returned from the sequence:
    [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
    Example 2:
    Given nums1 = [1,1,2], nums2 = [1,2,3],  k = 2
    
    Return: [1,1],[1,1]
    
    The first 2 pairs are returned from the sequence:
    [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
    Example 3:
    Given nums1 = [1,2], nums2 = [3],  k = 3 
    
    Return: [1,3],[2,3]
    
    All possible pairs are returned from the sequence:
    [1,3],[2,3]

     类似于find kth small element in sorted matrix, 另外数组是个好东西,在构造heap 的元素的时候

    Some observations: For every numbers in nums1, its best partner(yields min sum) always strats from nums2[0] since arrays are all sorted;

    Frist, we take the first k elements of nums1 and paired with nums2[0] as the starting pairs so that we have (0,0), (1,0), (2,0),.....(k-1,0) in the heap.
    Each time after we pick the pair with min sum, we put the new pair with the second index +1. ie, pick (0,0), we put back (0,1). Therefore, the heap alway maintains at most min(k, len(nums1)) elements.

    For each pair, we need to keep track of its position in nums2[], if the position is greater than or equal to nums2's size, no need to put back new pair with second index+1

    Below is also a good way to define heap

    PriorityQueue<int[]> queue = new PriorityQueue<>((a,b)->a[0]+a[1]-b[0]-b[1]); 
    public class Solution {
        public List<int[]> kSmallestPairs(int[] nums1, int[] nums2, int k) {
            PriorityQueue<int[]> queue = new PriorityQueue<int[]>(k, new Comparator<int[]>() {
                public int compare(int[] a, int[] b) {
                    return (a[0]+a[1])-(b[0]+b[1]);
                }
            });
            
            //PriorityQueue<int[]> queue = new PriorityQueue<>((a,b)->a[0]+a[1]-b[0]-b[1]);
            
            List<int[]> res = new ArrayList<int[]>();
            if (nums1.length==0 || nums2.length==0 || k==0) return res;
            for (int i=0; i<nums1.length && i<k; i++) {
                queue.offer(new int[]{nums1[i], nums2[0], 0});
            }
            for (int i=0; i<k && !queue.isEmpty(); i++) {
                int[] cur = queue.poll();
                res.add(new int[]{cur[0], cur[1]});
                if (cur[2]+1 < nums2.length) {
                    queue.offer(new int[]{cur[0], nums2[cur[2]+1], cur[2]+1});
                }
            }
            return res;
        }
    }
    

      

  • 相关阅读:
    Django-url反向解析和命名空间
    django-分页paginator
    python-命令模式
    python-访问者模式
    python-责任链模式
    python-备忘录模式
    最长无重复字串
    计算机网络常见面试题
    C++对象模型
    原码反码补码(转)
  • 原文地址:https://www.cnblogs.com/apanda009/p/7801560.html
Copyright © 2020-2023  润新知