• scala集合上常用的方法


    sacala 关于集合常用的操作

       map
    1.映射:对集合中的每一个元素进行执行某一项操作
    2.返回值类型,正常情况不变,原来集合是什么类型,就返回什么类型
    3.元素类型,根据我们函数的返回值类型

    val f = (x: Int) => x * 10
    val arr: Array[Int] = Array(1, 2, 3, 6, 7, 9)
    //对上面数组的数字进行处理,每个数字乘以10
    //第一种方法
    val map1: Array[Int] = arr.map(t => t * 10)
    println(map1.toList)
    //第二种方法
    val map2: Array[Int] = arr.map((x: Int) => x * 10)
    println(map2.toList)
    //第三种方法
    val map3: Array[Int] = arr.map(f)
    println(map3.toList)

    val map4: Array[Boolean] = arr.map(x => x % 2 == 0)
    // List(false, true, false, true, false, false)
    println(map4.toList)


    Filter
    Filter方法,过滤出满足条件的数据,返回数据的类型,和之前的一模一样

    val list1: List[Int] = List(1, 2, 4, 7, 8, 3)
    val filter1: List[Int] = list1.filter(tp => tp % 2 == 0)
    println(filter1)
    val filter2: List[Int] = list1.filterNot(tp => tp % 2 == 0)
    println(filter2)

    //输出
    List(2, 4, 8)
    List(1, 7, 3)

    Flatten 压平

    val list: List[Array[Int]] = List(Array(1, 2, 3, 56), Array(4, 7, 8, 9))
    val flatten: List[Int] = list.flatten
    println(flatten)

    //输出
    List(1, 2, 3, 56, 4, 7, 8, 9)

    FlatMap=Flatten+Map

    scala> val arr=Array("hello spark","hello scala")
    arr: Array[String] = Array(hello spark, hello scala)

    scala> val arrSplit=arr.map(str=>str.split(" "))
    arrSplit: Array[Array[String]] = Array(Array(hello, spark), Array(hello, "", scala))

    scala> arrSplit.flatten
    res0: Array[String] = Array(hello, spark, hello, "", scala)

    scala> arr.flatMap(str=>str.split(" "))
    res1: Array[String] = Array(hello, spark, hello, "", scala)


    Count,find
    Count:统计满足条件的个数
    Find:统计满足条件的第一个元素

    val arr: Array[Int] = Array(1, 2, 3, 4, 8, 75, 9, 0)
    val count: Int = arr.count(t => t < 3)
    println(count)
    val list1: List[Int] = List(1, 2, 4, 7, 8, 3)
    val count2: Int = list1.count(_ < 3)
    println(count2)
    val find1: Option[Int] = list1.find(_ > 3)
    println(find1)

    //输出
    3
    2
    Some(4)
    Foreach
    对集合中每一个元素进行操作,返回值:Unit

    scala> val list=List(1,4,2,6,7,9,3)
    list: List[Int] = List(1, 4, 2, 6, 7, 9, 3)

    scala> list.foreach(println)

    GroupBy 按照指定条件来分组

    scala> val arr=Array(("hello",1),("world",1),("hello",1),("spark",1))
    arr: Array[(String, Int)] = Array((hello,1), (world,1), (hello,1), (spark,1))

    scala> arr.groupBy(x=>x._1)
    res3: scala.collection.immutable.Map[String,Array[(String, Int)]] = Map(spark -> Array((spark,1)), world -> Array((world,1)), hello -> Array((hello,1), (hello,1)))

    SortBy,SortWith,Sorted
    1.Sorted:默认排序
    2.SortBy:参数是一个函数,指定排序的规则,默认是升序
    3.SortWith:接收两个参数,两个参数进行比较
    4.在函数中,如果变量只出现一次,那么此时我们可以使用_来代替

    scala> val list=List(1,3,4,5,4,6,3,2,5,6)
    list: List[Int] = List(1, 3, 4, 5, 4, 6, 3, 2, 5, 6)

    scala> list.sorted
    res5: List[Int] = List(1, 2, 3, 3, 4, 4, 5, 5, 6, 6)

    scala> list.sortBy(t=>t)
    res6: List[Int] = List(1, 2, 3, 3, 4, 4, 5, 5, 6, 6)

    scala> list.sortWith((a,b)=>a>b)
    res7: List[Int] = List(6, 6, 5, 5, 4, 4, 3, 3, 2, 1)

    scala> list.sortWith((a,b)=>a<b)
    res8: List[Int] = List(1, 2, 3, 3, 4, 4, 5, 5, 6, 6)

    scala> list.sortWith(_>_)
    res9: List[Int] = List(6, 6, 5, 5, 4, 4, 3, 3, 2, 1)

    scala> list.sortWith(_<_)
    res10: List[Int] = List(1, 2, 3, 3, 4, 4, 5, 5, 6, 6)

    交集,并集,差集,去重
    1.并集:union
    2.交集:intersect
    3.差集:diff
    4.去重:distinct

    scala> val arr=Array(1,2,4,5,6,7,2)
    arr: Array[Int] = Array(1, 2, 4, 5, 6, 7, 2)

    scala> val arr1=Array(1,3,4)
    arr1: Array[Int] = Array(1, 3, 4)

    //并集
    scala> arr union arr1
    res15: Array[Int] = Array(1, 2, 4, 5, 6, 7, 2, 1, 3, 4)

    //交集
    scala> arr intersect arr1
    res16: Array[Int] = Array(1, 4)

    //arr1的差集
    scala> arr diff arr1
    res17: Array[Int] = Array(2, 5, 6, 7, 2)

    //arr的差集
    scala> arr1 diff arr
    res18: Array[Int] = Array(3)

    //去重
    scala> res15.distinct
    res19: Array[Int] = Array(1, 2, 4, 5, 6, 7, 3)


    Grouped(n:Int)->n是用来分组的个数
    按照指定元素个数来分组

    scala> val arr=Array(1,3,43,45,5,6,7,3,2,8)
    arr: Array[Int] = Array(1, 3, 43, 45, 5, 6, 7, 3, 2, 8)

    scala> arr.grouped(2)
    res20: Iterator[Array[Int]] = non-empty iterator

    scala> res20.foreach(arr=>println(arr.toList))
    List(1, 3)
    List(43, 45)
    List(5, 6)
    List(7, 3)
    List(2, 8)

    MkString

    scala> arr
    res22: Array[Int] = Array(1, 3, 43, 45, 5, 6, 7, 3, 2, 8)

    scala> arr.mkString
    res23: String = 134345567328

    scala> arr.mkString("@")
    res24: String = 1@3@43@45@5@6@7@3@2@8

    scala> arr.mkString("^A")
    res25: String = 1^A3^A43^A45^A5^A6^A7^A3^A2^A8

    To Until其实他们都还可以指定步长

    scala> 1 to 10
    res31: scala.collection.immutable.Range.Inclusive = Range 1 to 10

    scala> 1.to(10,2)
    res32: scala.collection.immutable.Range.Inclusive = inexact Range 1 to 10 by 2

    scala> 10.to(1,-3)
    res33: scala.collection.immutable.Range.Inclusive = Range 10 to 1 by -3

    MapValues
    和map类似,只不过mapvalues处理的Map集合中的value值,key保持不变

    val map1: Map[String, Int] = Map[String, Int]("a" -> 100, "b" -> 200, "c" -> 300)
    //第一种方法
    println("第一种")
    map1.mapValues(t => t * 10).foreach(println)
    //第二种方法
    println("第二种")
    map1.map(t => (t._1, t._2 * 10)).foreach(println)

    //输出
    第一种
    (a,1000)
    (b,2000)
    (c,3000)
    第二种
    (a,1000)
    (b,2000)
    (c,3000)
    Reduce ReduceLeft ReduceRight
    1.都是元素的归并,元素的聚合,具体如何聚合,取决于我们的函数
    2.Reduce调用的是reduceLeft,但他俩之间的区别是,reduce的参数必须是同一种类型
    3.ReduceRight是从右往左进行计算,两两计算,再将结果和第三个结果进行计算
    4.ReduceLeft也是,只不过是从左往右进行计算

    val arr: Array[List[String]] = Array[List[String]](List("1"), List("2"))
    val redu1: List[String] = arr.reduce(_ ++ _)
    val redu2: List[String] = arr.reduce(_ ::: _)
    println("redu1:" + redu1)
    println("redu2:" + redu2)

    val arr1: Array[Int] = Array(1, 2, 3, 5, 6)
    val r1: Int = arr1.reduce(_ + _)
    //这个地方的+代表相加
    val r11: Int = arr1.reduce(_ - _)
    val r12: Int = arr1.reduceLeft(_ - _)
    val r13: Int = arr1.reduceRight(_ - _)
    //求和
    val r14: Int = arr1.reduce((a, b) => a + b)
    //乘积
    val r15: Int = arr1.reduce(_ * _)
    println("r1:" + r1)
    println("r11:" + r11)
    println("r12:" + r12)
    println("r13:" + r13)
    println("r14:" + r14)
    println("r15:" + r15)

    val arr2: Array[String] = Array("a", "b", "c", "d")
    val r2: String = arr2.reduce(_ + _) //这个地方的1+代表连接
    println("r2:" + r2)

    val arr3: Array[List[Int]] = Array(List(1, 2, 3, 5, 6), List(3, 4, 5, 7, 8))
    val r3 = arr3.reduce(_ ++ _)
    val r31 = arr3.reduce(_ ::: _)
    val r32: List[Int] = arr3.reduceRight(_ ::: _)
    println("r3:" + r3)
    println("r31:" + r31)
    println("r32:" + r32)
    }

    //输出
    redu1:List(1, 2)
    redu2:List(1, 2)
    r1:17
    r11:-15
    r12:-15
    r13:3
    r14:17
    r15:180
    r2:abcd
    r3:List(1, 2, 3, 5, 6, 3, 4, 5, 7, 8)
    r31:List(1, 2, 3, 5, 6, 3, 4, 5, 7, 8)
    r32:List(1, 2, 3, 5, 6, 3, 4, 5, 7, 8)


    Fold FoldLeft FoldRight
    1.Fold:带初始值的归并,和reduce相比一样,就比reduce多了有一个初始值
    2.FoldLeft:从左向右归并
    3.FoldRight:从右向左归并

    val arr: Array[Int] = Array(1, 3, 5, 7,11)
    println(arr.fold(10)(_ + _))
    println(arr.foldRight(10)(_ + _))
    println(arr.foldLeft(10)(_ + _))
    println("=========================")
    println(arr.fold(10)(_ - _))
    println(arr.foldLeft(10)(_ - _))
    //(1-(3-(5-(7-(11-10)))))
    //两两相减
    println(arr.foldRight(10)(_ - _))

    //输出
    37
    37
    37

    Aggregate
    Aggregate:聚合
    1.单机版的aggregate调用的是fold
    2.第一个函数:局部聚合
    3.第二个函数:全局聚合

    val arr: Array[List[Int]] = Array[List[Int]](List(1, 3), List(2), List(2, 6))
    val result: Int = arr.aggregate(10)((a, b) => a + b.sum, _ + _)
    println("result:" + result)

    val arr1: Array[Int] = Array(1, 2, 4, 5, 6, 7, 9)
    //在scala中,没有局部和全局的概念,只会执行第一个函数,第二个函数不做处理
    val result2: Int = arr1.aggregate(0)(_ + _, _ * _)
    println("result2:" + result2)

    //输出
    result:24
    result2:34

    初始值和累加值的补充
    元素值和累加值是不固定的

    val list: List[List[Int]] = List[List[Int]](List(1, 2), List(3), List(5, 7))
    //初始值和累加值如何实现
    //a:累加值 b:元素值
    //累加值:List(1,2) 元素值(3)
    //List(1,2)+List(3)=List(1,2,3)
    //累加值:List(1,2,3) 元素值(5,7)
    //List(1,2,3)+List(5,7)=List(1,2,3,5,7)
    //reduce
    val result: List[Int] = list.reduce((a, b) => (a ++ b))
    //fold
    val result2: List[Int] = list.fold(List(11))((a, b) => (a ++ b))
    //累加值:List(11) 元素值:List(1,2)
    //每个元素的最大值相加:2+5+7
    val result3: Int = list.aggregate(0)((a, b) => a + b.max, _ + _)
    println("redult:" + result)
    println("redult2:" + result2)
    println("redult3:" + result3)

    //输出
    redult:List(1, 2, 3, 5, 7)
    redult2:List(11, 1, 2, 3, 5, 7)
    redult3:12

    Take(n:Int) Slice
    1.take(n):获取n个元素
    2.Slice:截取元素,传递的都是索引值,区间[)

    val list: List[Int] = List[Int](1, 2, 3, 6, 7, 9)
    //截取前两个元素
    val result: List[Int] = list.take(2)
    println("result:" + result)
    val result2: List[Int] = list.slice(0, 3)
    println("result2:" + result2)

    //输出
    result:List(1, 2)
    result2:List(1, 2, 3)

  • 相关阅读:
    Oracle11g新建用户及用户表空间
    PLSQL连接oracle12c
    Zabbix微信报警脚本及写触发记录
    使用document.select(Jquery Css selector) selector:看jsoup文档来敲案例学习 selector选择器
    仙女打卡day1
    XML的解析(读取),附带源码与运行效果图 (day01)
    [Luogu] P7077 函数调用
    [Luogu] P5815 [CQOI2010]扑克牌
    [Luogu] CF364D Ghd
    [Luogu] P4823 [TJOI2013]拯救小矮人
  • 原文地址:https://www.cnblogs.com/aibabel/p/10976136.html
Copyright © 2020-2023  润新知