Closest Binary Search Tree Value II
要点:通过iterator,把closest值附近的k个closest找到,从而time降为O(klgn)
- in order iterator的本质:栈存当前见到,未来还要再访问到的node。当前见到是沿着left访问,而未来再见到就是到了right branch
- 这题的iterator实现和一般的in-order iterator略有不同:inorder访问后的结点并不出栈而是直接继续push right subtree,当右子pop的时候,继续通过判断是否为右子决定是否pop父节点。如果是左子,那么父节点。而一般的iterator实现不需要连续验证父节点,因为在push right subtree之前已经出栈了。
- 这题之所以不pop父节点是因为初始化(小就向左大就向右)后的stack状态和以当前点iterator的stack state是一样的,而向右走是不pop的。
- 初始化和I的区别:最后只保留closest之前的在栈里,但是在完整路径走完之前是不知道的。所以只能最后截取。
https://repl.it/Cg9u/2 (scott solution)
https://repl.it/CiYU/2 (my)
错误点
- cur1和cur2有可能过界,因为是超过一边的比较,但不会2个都过界。所以条件是not cur2 OR (cur1 and dist(cur1)<dist(cur2)
def closestKValues(self, root, target, k):
# Helper, takes a path and makes it the path to the next node
def nextpath(path, kid1, kid2):
if path:
if kid2(path):
path += kid2(path), # 当前node(右子)进栈
while kid1(path):
path += kid1(path),
else:
kid = path.pop()
while path and kid is kid2(path):
kid = path.pop()
# These customize nextpath as forward or backward iterator
kidleft = lambda path: path[-1].left
kidright = lambda path: path[-1].right
# Build path to closest node
path = []
while root:
path += root,
root = root.left if target < root.val else root.right
dist = lambda node: abs(node.val - target)
path = path[:path.index(min(path, key=dist))+1]
# Get the path to the next larger node
path2 = path[:]
nextpath(path2, kidleft, kidright)
# Collect the closest k values by moving the two paths outwards
vals = []
for _ in range(k):
if not path2 or path and dist(path[-1]) < dist(path2[-1]):
vals += path[-1].val, # 当所有左子都访问后,如果当前点是父节点的右子,其为栈顶,在这里访问,之后如果其没右子,就被pop掉。和一般的iterator算法有什么不同?这里左子树访问完了的结点是不出栈的直接push右节点,当右子树访问完了... next: 右子访问结束呢? 所以要连续pop右子,这样可以保证不会再进到右子。而左子只会把自己pop掉,露出父结点
nextpath(path, kidright, kidleft)
else:
vals += path2[-1].val,
nextpath(path2, kidleft, kidright)
return vals
# Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
# Note:
# Given target value is a floating point.
# You may assume k is always valid, that is: k ≤ total nodes.
# You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
# Follow up:
# Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
# Hint:
# Consider implement these two helper functions:
# getPredecessor(N), which returns the next smaller node to N.
# getSuccessor(N), which returns the next larger node to N.
# Try to assume that each node has a parent pointer, it makes the problem much easier.
# Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
# You would need two stacks to track the path in finding predecessor and successor node separately.
# Hide Company Tags Google
# Hide Tags Tree Stack
# Hide Similar Problems (M) Binary Tree Inorder Traversal (E) Closest Binary Search Tree Value
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def closestKValues(self, root, target, k):
"""
:type root: TreeNode
:type target: float
:type k: int
:rtype: List[int]
"""
def next(stk, left, right):
top = stk[-1]
if right(top):
l = right(top)
while l:
stk.append(l)
l=left(l)
return stk[-1]
else:
top = stk.pop()
while stk and right(stk[-1])==top:
top = stk.pop()
return stk[-1] if stk else None # error: doesnt matter, will never be empty
left = lambda x: x.left
right = lambda x: x.right
stk = []
while root:
stk.append(root)
if root.val<target:
root = root.right
else:
root = root.left
# print [s.val for s in stk]
dist = lambda x: abs(x.val-target)
stk1 = stk[:stk.index(min(stk, key=dist))+1] # error 1: how to get min and keep the index
stk2 = list(stk1)
cur1 = stk1[-1]
cur2 = next(stk2, left, right)
res = []
for _ in xrange(k):
if not cur2 or (cur1 and dist(cur1)<dist(cur2)): # error
res.append(cur1.val)
cur1 = next(stk1, right, left)
else:
res.append(cur2.val)
cur2 = next(stk2, left, right)
return res