http://www.lydsy.com/JudgeOnline/problem.php?id=3876
这道题每条支线的意思是每条边。。。
那么每条边的下界设为1就行了。
这样建出一个DAG,每条边下界为1,上界为正无穷,赋上费用。设1为S。所有点向T连边,下界为0,上界为正无穷,费用为0,表示可以随时退出。答案是这个图中的最小费用可行流。
最小费用可行流怎么求啊!
可行流什么的我只会求无源汇的。
想了好半天才明白该怎么做。。。
抛弃原来的建图,还是建出一个DAG,每条边下界为1,上界为正无穷,赋上费用。所有非1的点都向1连一条下界为0上界无穷费用为0的边,表示可以随时退出回到1点。
这样就是无源汇的啦!
我们要求这个新的图(附加网络)的最小费用可行流。
可行流我会求(套模板),设超级源S和超级汇T,每个点的入点下界和减去出点下界和,记为di。如果di小于0,从i连边向T,容量为-di;如果di大于0,从S连边向i,容量为di(都是模板的内容~)
从超级源到超级汇跑最大流,跑出来的就是可行流减去下界的流量。因为题意,所以肯定有解;又因为是DAG,所以可行流就是最小流。
如果要求最小费用可行流?不断spfa增广就可以实现最小费用了!
这样对于一条边的流量f=d+g,f为可行流的流量,d为下界,g为附加网络中实际的流量。
求出的最小费用是(sum_{i∈E}g_i*w_i),并不是我们想要的f!
怎么办呢?因为所有的d一定会流满,所以直接加上(sum_{i∈E}d_i*w_i)即可!(我好蠢啊,想了一晚上)
附赠样例图示:
6
2 2 1 3 2
2 4 3 5 4
2 5 5 6 6
0
0
0
附加网络是介个样子的:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 333;
const int M = N * N;
const int inf = 0x7fffffff;
struct node {
int nxt, to, c, w, from;
} E[M];
int cnt = 1, point[N];
void ins(int u, int v, int c, int w) {
E[++cnt] = (node) {point[u], v, c, w, u}; point[u] = cnt;
E[++cnt] = (node) {point[v], u, 0, -w, v}; point[v] = cnt;
}
bool inq[N];
int dist[N], pre[N], q[N];
bool spfa(int s, int t) {
for (int i = 1; i <= t; ++i) dist[i] = inf;
int head = 0, tail = 1, u, v, tt;
dist[s] = 0; inq[s] = true; q[1] = s;
while (head != tail) {
++head; if (head == N) head = 0;
u = q[head]; inq[u] = false;
for (int i = point[u]; i; i = E[i].nxt)
if (E[i].c && dist[v = E[i].to] > (tt = dist[u] + E[i].w)) {
dist[v] = tt; pre[v] = i;
if (!inq[v]) {
inq[v] = true;
++tail; if (tail == N) tail = 0;
q[tail] = v;
}
}
}
return dist[t] != inf;
}
int MCMF(int s, int t) {
int ret = 0;
while (spfa(s, t)) {
int f = inf, u;
for (u = t; u != s; u = E[pre[u]].from) f = min(f, E[pre[u]].c);
for (u = t; u != s; u = E[pre[u]].from) E[pre[u]].c -= f, E[pre[u] ^ 1].c += f;
ret += dist[t] * f;
}
return ret;
}
int n, du[N], S, T, ans = 0;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
int tot, bi, ti; scanf("%d", &tot);
du[i] -= tot;
while (tot--) {
scanf("%d%d", &bi, &ti);
ins(i, bi, inf, ti);
++du[bi]; ans += ti;
}
if (i != 1) ins(i, 1, inf, 0);
}
S = n + 1; T = S + 1;
for (int i = 1; i <= n; ++i) {
if (du[i] > 0) ins(S, i, du[i], 0);
if (du[i] < 0) ins(i, T, -du[i], 0);
}
printf("%d
", MCMF(S, T) + ans);
return 0;
}
QAQ终于写完了,那么接下来我们