• 排序小结


    插入排序(O(N2))

    //从小到大
    void InsertionSort( ElementType A[ ], int N )
    {
        int j, P;
        ElementType Tmp;
    
        for( P = 1; P < N; P++ )
        {
            Tmp = A[ P ];
            for( j = P; j > 0 && A[ j - 1 ] > Tmp; j-- )
                A[ j ] = A[ j - 1 ];
            A[ j ] = Tmp;
        }
    }
    
    //从大到小
    void InsertionSort( ElementType A[ ], int N )
    {
        int j, P;
        ElementType Tmp;
    
        for( P = N - 2; P >= 0; P-- )
        {
            Tmp = A[ P ];
            for( j = P; j < N - 1 && A[ j + 1 ] > Tmp; j++ )
                A[ j ] = A[ j + 1 ];
            A[ j ] = Tmp;
        }
    }

    堆排序(2NlogN-O(NloglogN))

    #define LeftChild( i )  ( 2 * ( i ) + 1 )
    
    void PercDown( ElementType A[ ], int i, int N )
    {
        int Child;
        ElementType Tmp;
    
        for( Tmp = A[ i ]; LeftChild( i ) < N; i = Child )
        {
            Child = LeftChild( i );
            if( Child != N - 1 && A[ Child + 1 ] > A[ Child ] ) // A[ Child + 1 ] < A[ Child ]
                Child++;
            if( Tmp < A[ Child ] )          //Tmp > A[ Child ]
                A[ i ] = A[ Child ];        //两边的比较同时更改的话,就变成从大到小排序
            else
                break;
        }
        A[ i ] =Tmp;
    }
    
    void Heapsort( ElementType A[ ], int N )
    {
        int i;
    
        for( i = N / 2; i >= 0; i-- )  /* BuildHeap */
            PercDown( A, i, N );
        for( i = N - 1; i > 0; i-- )
        {
            Swap( &A[ 0 ], &A[ i ] );  /* DeleteMax */
            PercDown( A, 0, i );
        }
    }
    

    归并排序O(NlogN)

    void Merge( ElementType A[ ], ElementType TmpArray[ ],int Lpos, int Rpos, int RightEnd )
    {
        int i, LeftEnd, NumElements, TmpPos;
    
        LeftEnd = Rpos - 1;
        TmpPos = Lpos;
        NumElements = RightEnd - Lpos + 1;
    
        /* main loop */
        while( Lpos <= LeftEnd && Rpos <= RightEnd )
            if( A[ Lpos ] <= A[ Rpos ] )
                TmpArray[ TmpPos++ ] = A[ Lpos++ ];
            else
                TmpArray[ TmpPos++ ] = A[ Rpos++ ];
    
        while( Lpos <= LeftEnd )  /* Copy rest of first half */
            TmpArray[ TmpPos++ ] = A[ Lpos++ ];
        while( Rpos <= RightEnd ) /* Copy rest of second half */
            TmpArray[ TmpPos++ ] = A[ Rpos++ ];
    
        /* Copy TmpArray back */
        for( i = 0; i < NumElements; i++, RightEnd-- )
            A[ RightEnd ] = TmpArray[ RightEnd ];
    }
    
    void MSort( ElementType A[ ], ElementType TmpArray[ ],int Left, int Right )
    {
        int Center;
    
        if( Left < Right )
        {
            Center = ( Left + Right ) / 2;
            MSort( A, TmpArray, Left, Center );
            MSort( A, TmpArray, Center + 1, Right );
            Merge( A, TmpArray, Left, Center + 1, Right );
        }
    }
    
    void Mergesort( ElementType A[ ], int N )
    {
        ElementType *TmpArray;
    
        TmpArray = malloc( N * sizeof( ElementType ) );
        if( TmpArray != NULL )
        {
            MSort( A, TmpArray, 0, N - 1 );
            free( TmpArray );
        }
        else
            FatalError( "No space for tmp array!!!" );
    }
    

    快速排序O(NlogN)

    /* Return median of Left, Center, and Right */
    /* Order these and hide the pivot */
    //从小到大
    ElementType Median3( ElementType A[ ], int Left, int Right )
    {
        int Center = ( Left + Right ) / 2;
    
        if( A[ Left ] > A[ Center ] )
            Swap( &A[ Left ], &A[ Center ] );
        if( A[ Left ] > A[ Right ] )
            Swap( &A[ Left ], &A[ Right ] );
        if( A[ Center ] > A[ Right ] )
            Swap( &A[ Center ], &A[ Right ] );
    
        /* Invariant: A[ Left ] <= A[ Center ] <= A[ Right ] */
    
        Swap( &A[ Center ], &A[ Right - 1 ] );  /* Hide pivot */
        return A[ Right - 1 ];                /* Return pivot */
    }
    
    
    //从大到小
    ElementType Median3( ElementType A[ ], int Left, int Right )
    {
        int Center = ( Left + Right ) / 2;
    
        if( A[ Left ] < A[ Center ] )
            Swap( &A[ Left ], &A[ Center ] );
        if( A[ Left ] < A[ Right ] )
            Swap( &A[ Left ], &A[ Right ] );
        if( A[ Center ] < A[ Right ] )
            Swap( &A[ Center ], &A[ Right ] );
    
        /* Invariant: A[ Left ] >= A[ Center ] >= A[ Right ] */
    
        Swap( &A[ Center ], &A[ Left + 1 ] );  /* Hide pivot */
        return A[ Left + 1 ];                /* Return pivot */
    }
    
    
    //从小到大
    #define Cutoff ( 3 )
    void Qsort( ElementType A[ ], int Left, int Right )
    {
        int i, j;
        ElementType Pivot;
    
        if( Left + Cutoff <= Right )
        {
            Pivot = Median3( A, Left, Right );
            i = Left;
            j = Right - 1;
            for( ; ; )
            {
                while( A[ ++i ] < Pivot ) { }
                while( A[ --j ] > Pivot ) { }
                if( i < j )
                    Swap( &A[ i ], &A[ j ] );
                else
                    break;
            }
            Swap( &A[ i ], &A[ Right - 1 ] );  /* Restore pivot */
    
            Qsort( A, Left, i - 1 );
            Qsort( A, i + 1, Right );
        }
        else  /* Do an insertion sort on the subarray */
            InsertionSort( A + Left, Right - Left + 1 );
    }
    
    
    //从大到小
    #define Cutoff ( 3 )
    void Qsort( ElementType A[ ], int Left, int Right )
    {
        int i, j;
        ElementType Pivot;
    
        if( Left + Cutoff <= Right )
        {
            Pivot = Median3( A, Left, Right );
            i = Left + 1;
            j = Right;
            for( ; ; )
            {
                while( A[ ++i ] > Pivot ) { }
                while( A[ --j ] < Pivot ) { }
                if( i < j )
                    Swap( &A[ i ], &A[ j ] );
                else
                    break;
            }
            Swap( &A[ j ], &A[ Left + 1 ] );  /* Restore pivot */
    
            Qsort( A, Left, j - 1 );
            Qsort( A, j + 1, Right );
        }
        else  /* Do an insertion sort on the subarray */
            InsertionSort( A + Left, Right - Left + 1 );
    }
    
    
    
    /* This code doesn't work; it's Figure 7.15. */
    //A[i] = A[j] = Pivot时,程序死循环
    #if 0
    /* START: fig7_15.txt */
    i = Left + 1;
    j = Right - 2;
    for( ; ; )
    {
        while( A[ i ] < Pivot ) i++;
        while( A[ j ] > Pivot ) j--;
        if( i < j )
            Swap( &A[ i ], &A[ j ] );
        else
            break;
    }
    #endif
    
    void Quicksort( ElementType A[ ], int N )
    {
        Qsort( A, 0, N - 1 );
    }
    

      

  • 相关阅读:
    五.Flink实时项目电商用户行为分析之订单支付实时监控
    四.Flink实时项目电商用户行为分析之恶意登录监控
    三.Flink实时项目电商用户行为分析之市场营销商业指标统计分析
    二.Flink实时项目电商用户行为之实时流量统计
    一.Flink实时项目电商用户行为分析之实时热门商品统计
    Flink 流处理API之实现UDF函数——更细粒度的控制流
    二.Flink 流处理API之Transform
    5组-Alpha冲刺-1/6
    5组 需求分析报告
    5组 团队展示
  • 原文地址:https://www.cnblogs.com/ZhaoxiCheung/p/5815283.html
Copyright © 2020-2023  润新知