Problem : [Usaco2007 Open]Catch That Cow 抓住那只牛
Time Limit: 5 Sec Memory Limit: 128 MB
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 <= N <= 100,000) on a number line and the cow is at a point K (0 <= K <= 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. *Walking: FJ can move from any point X to the points X-1 or X+1 in a single minute * Teleporting: FJ can move from any point X to the point 2*X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
农夫约翰得知了一头逃亡的母牛的位置,他想立即抓住她。他从数字线上的一个点n(0<=n<=100000)开始,奶牛在同一条数字线上的一个点k(0<=k<=100000)。农民约翰有两种交通方式:步行和传送。步行:FJ可以在一分钟内从任意点X移动到点X-1或X+1传送:FJ可以在一分钟内从任意点X移动到点2*X。如果牛没有意识到它的追求,一点也不动,农夫约翰需要多长时间才能找回它?
Input
- Line 1: Two space-separated integers: N and K
仅有两个整数N和K.
Output
- Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
最短的时间.
Sample Input
5 17
Farmer John starts at point 5 and the fugitive cow is at point 17.
Sample Output
4
The fastest way for Farmer John to reach the fugitive cow is to
move along the following path: 5-10-9-18-17, which takes 4 minutes.
code:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iomanip>
#include<map>
#include<set>
#include<vector>
#include<queue>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
const int N=1e5+100;
bool mark[N<<1],flag=1;
int n,m,q[N<<2],dis[N<<1],ans;
int main()
{
n=read();m=read(); if(n>m){printf("%d
",n-m);return 0;}
int hd=0,tl=2;
q[++hd]=n;mark[n]=0;q[tl++]=m;mark[m]=1;
dis[1]=dis[2]=0;
while(hd<tl)
{
int t=q[hd];hd++;
if(!mark[t])
{
if(t-1>=0&&!dis[t-1]&&!mark[t-1])
{dis[t-1]=dis[t]+1;mark[t-1]=0;q[tl++]=t-1;}
else if(t-1>=0&&mark[t-1])
{ans=dis[t]+dis[t-1]+1;break;}
if(t+1<=n+m&&!dis[t+1]&&!mark[t+1])
{dis[t+1]=dis[t]+1;mark[t+1]=0;q[tl++]=t+1;}
else if(t+1<=n+m&&mark[t+1])
{ans=dis[t]+dis[t+1]+1;break;}
if(t<<1<=n+m&&!dis[t<<1]&&!mark[t<<1])
{dis[t<<1]=dis[t]+1;mark[t<<1]=0;q[tl++]=t<<1;}
else if(t<<1<=n+m&&mark[t<<1])
{ans=dis[t]+dis[t<<1]+1;break;}
}
else
{
if(t-1>=0&&!dis[t-1])
{dis[t-1]=dis[t]+1;mark[t-1]=1;q[tl++]=t-1;}
else if(t-1>=0&&!mark[t-1])
{ans=dis[t]+dis[t-1]+1;break;}
if(t+1<=n+m&&!dis[t+1])
{dis[t+1]=dis[t]+1;mark[t+1]=1;q[tl++]=t+1;}
else if(t+1<=n+m&&!mark[t+1])
{ans=dis[t]+dis[t+1]+1;break;}
if(!(t&1)&&flag)
{
if(t==0)flag=0;
if(!dis[t>>1])
{dis[t>>1]=dis[t]+1;mark[t>>1]=1;q[tl++]=t>>1;}
else if(!mark[t>>1])
{ans=dis[t]+dis[t>>1]+1;break;}
}
}
}
printf("%d
",ans);
}