链接:https://vjudge.net/problem/HDU-3966
题意:
Our protagonist is the handsome human prince Aragorn comes from The Lord of the Rings. One day Aragorn finds a lot of enemies who want to invade his kingdom. As Aragorn knows, the enemy has N camps out of his kingdom and M edges connect them. It is guaranteed that for any two camps, there is one and only one path connect them. At first Aragorn know the number of enemies in every camp. But the enemy is cunning , they will increase or decrease the number of soldiers in camps. Every time the enemy change the number of soldiers, they will set two camps C1 and C2. Then, for C1, C2 and all camps on the path from C1 to C2, they will increase or decrease K soldiers to these camps. Now Aragorn wants to know the number of soldiers in some particular camps real-time.
思路:
第一次写树链剖分, 直接上模板。
代码:
#include <iostream> #include <memory.h> #include <string> #include <istream> #include <sstream> #include <vector> #include <stack> #include <algorithm> #include <map> #include <queue> #include <math.h> #include <cstdio> #include <set> #include <iterator> #include <cstring> #include <assert.h> using namespace std; typedef long long LL; const int MAXN = 5e4+10; vector<int> G[MAXN]; int Dis[MAXN], Fa[MAXN], Top[MAXN], Size[MAXN]; int Son[MAXN], Id[MAXN], Rk[MAXN]; int Seg[MAXN*4], A[MAXN], Add[MAXN*4]; int n, m, p; int x, y; int cnt = 0; void Init() { for (int i = 1;i <= n;i++) G[i].clear(); memset(Seg, 0, sizeof(Seg)); memset(Son, 0, sizeof(Son)); memset(Add, 0, sizeof(Add)); cnt = 0; } void Dfs1(int x, int u, int dep) { Dis[u] = dep; Fa[u] = x; Size[u] = 1; for (int i = 0;i < G[u].size();i++) { int v = G[u][i]; if (v == x) continue; Dfs1(u, v, dep+1); Size[u] += Size[v]; if (Size[v] > Size[Son[u]]) Son[u] = v; } } void Dfs2(int u, int top) { Top[u] = top; Id[u] = ++cnt; Rk[cnt] = u; if (!Son[u]) return; Dfs2(Son[u], top); for (int i = 0;i < G[u].size();i++) { int v = G[u][i]; if (v != Son[u] && v != Fa[u]) Dfs2(v, v); } } void PushUp(int root) { Seg[root] = Seg[root<<1]+Seg[root<<1|1]; } void PushDown(int root, int l, int r) { if (Add[root]) { int mid = (l+r)/2; Add[root<<1] += Add[root]; Add[root<<1|1] += Add[root]; Seg[root<<1] += (mid-l+1)*Add[root]; Seg[root<<1|1] += (r-mid)*Add[root]; Add[root] = 0; } } void Build(int root, int l, int r) { if (l == r) { Seg[root] = A[Rk[l]]; return; } int mid = (l+r)/2; Build(root<<1, l, mid); Build(root<<1|1, mid+1, r); PushUp(root); } int Query(int root, int l, int r, int ql, int qr) { if (r < ql || qr < l) return 0; if (ql <= l && r <= qr) return Seg[root]; PushDown(root, l, r); int mid = (l+r)/2; int res = 0; res += Query(root<<1, l, mid, ql, qr); res += Query(root<<1|1, mid+1, r, ql, qr); PushUp(root); return res; } void Update(int root, int l, int r, int ql, int qr, int c) { if (r < ql || qr < l) return; if (ql <= l && r <= qr) { Seg[root] += (r-l+1)*c; Add[root] += c; return; } PushDown(root, l, r); int mid = (l+r)/2; Update(root<<1, l, mid, ql, qr, c); Update(root<<1|1, mid+1, r, ql, qr, c); PushUp(root); } void UpdateLine(int l, int r, int c) { while (Top[l] != Top[r]) { if (Dis[Top[l]] < Dis[Top[r]]) swap(l, r); Update(1, 1, n, Id[Top[l]], Id[l], c); l = Fa[Top[l]]; } if (Id[l] < Id[r]) Update(1, 1, n, Id[l], Id[r], c); else Update(1, 1, n, Id[r], Id[l], c); } int main() { // freopen("test.in", "r", stdin); while (~scanf("%d%d%d", &n, &m, &p)) { Init(); for (int i = 1;i <= n;i++) scanf("%d", &A[i]); for (int i = 1;i < n;i++) { scanf("%d%d", &x, &y); G[x].push_back(y); G[y].push_back(x); } Dfs1(0, 1, 1); Dfs2(1, 1); Build(1, 1, n); // for (int i = 1;i <= n;i++) // cout << Dis[i] << ' '; // cout << endl; // for (int i = 1;i <= n;i++) // cout << Id[i] << ' '; // cout << endl; // for (int i = 1;i <= n;i++) // cout << Top[i] << ' ' ; // cout << endl; char op[10]; int l, r, v, w; while (p--) { scanf("%s", op); if (op[0] == 'I') { scanf("%d%d%d", &l, &r, &v); // cout << Top[l] << ' ' << Top[r] << endl; UpdateLine(l, r, v); } else if (op[0] == 'D') { scanf("%d%d%d", &l, &r, &v); v = -v; UpdateLine(l, r, v); } else { scanf("%d", &w); printf("%d ", Query(1, 1, n, Id[w], Id[w])); } } } return 0; }