• 数学图形之圆环


    这一节将为你展示如何生成圆环,以及各种与圆环相关的图形,有Cyclide surface,Horn Torus, tore de klein等.

    相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.

    我之前写过生成圆环的C++程序,代码发布在圆环(Ring)图形的生成算法

    (1)圆环

    vertices = D1:72 D2:72
    u = from 0 to (2*PI) D1
    v = from 0 to (2*PI) D2
    
    r = 3*cos(u) + 7
    
    z = 3*sin(u)
    y = r*sin(v)
    x = r*cos(v)
    
    y = y + 5
    

    (2)随机半径的圆环

    这里提供了两种写法:

    vertices = D1:72 D2:72
    
    u = from 0 to (2*PI) D1
    v = from 0 to (2*PI) D2
    
    a = 10.0
    b = rand2(0.5, a)
    
    x = (a + b*cos(v))*sin(u)
    y = b*sin(v)
    z = (a + b*cos(v))*cos(u)
    #http://www.mathcurve.com/surfaces/tore/tore.shtml
    vertices = D1:100 D2:100

    u = from 0 to (PI*2) D1 v = from 0 to (PI*2) D2
    a
    = rand2(1, 10) b = rand2(1, 10)
    x
    = (a + b*cos(v))*cos(u) z = (a + b*cos(v))*sin(u) y = b*sin(v)

    (3)Horn Torus

    其特点是小圈半径等于大圈的一半

    #http://mathworld.wolfram.com/HornTorus.html
    
    vertices = D1:100 D2:100
    
    u = from 0 to (PI*2) D1
    v = from 0 to (PI*2) D2
    
    x = (1 + cos(v))*cos(u)
    y = sin(v)
    z = (1 + cos(v))*sin(u)
    
    a = 10
    
    x = x*a
    y = y*a
    z = z*a

    (4)环桶

    vertices = D1:72 D2:72
    
    u = from 0 to (2*PI) D1
    v = from 0 to (2*PI) D2
    
    a = 10.0
    b = rand2(0.5, a)
    
    x = (a + b*cos(v))*sin(u)
    y = b*sin(v) + if(sin(v) > 0, 10, -10)
    z = (a + b*cos(v))*cos(u)

    (5)轮子

    vertices = D1:72 D2:72
    
    u = from 0 to (2*PI) D1
    v = from 0 to (2*PI) D2
    
    a = 10.0
    b = rand2(0.5, a)
    
    x = (a + b*cos(v))*sin(u)
    y = b*sin(2*v)
    z = (a + b*cos(v))*cos(u)

    (6)tore de klein

    #http://www.mathcurve.com/surfaces/klein/toredeklein.shtml
    
    vertices = D1:100 D2:100
    u = from 0 to (PI*2) D1
    v = from 0 to (PI*2) D2
    
    a = rand2(1, 10)
    b = rand2(1, 10)
    
    k = rand_int2(1, 20)
    k = k / 2
    
    x = (a+b*cos(v))*cos(u)
    z = (a+b*cos(v))*sin(u)
    y = b*sin(v)*cos(k*u)

    (7)拧着的圆环

    #http://www.mathcurve.com/surfaces/tore/tore.shtml
    vertices = D1:100 D2:100
    u = from 0 to (PI*2) D1
    v = from 0 to (PI*2) D2
    a = rand2(1, 10)
    b = rand2(0.5, a)
    
    t = sqrt(a*a - b*b)
    e = rand2(-2,2)
    
    x = t*sin(v)*cos(u) - e*(b + a*cos(v))*sin(u)
    z = t*sin(v)*sin(u) + e*(b + a*cos(v))*cos(u)
    y = b*sin(v)

    (8)多圈的环

    vertices = D1:100 D2:100
    u = from 0 to (2*PI) D1
    v = from 0 to (2*PI) D2
    
    a = sin(u)
    b = cos(u)
    
    c = sin(v)
    d = cos(v)
    
    r = 3 + c + b
    o = 2 * v
    
    x = r*sin(o)
    y = a + 2*d
    z = r*cos(o)
    
    x = x*5
    y = y*5
    z = z*5

    (9)偏圆环

    vertices = D1:100 D2:100
    u = from 0 to (2*PI) D1
    v = from 0 to (2*PI) D2
    
    a = rand2(5, 10)
    c = rand2(1, a/2)
    b = sqrt(a*a - c*c)
    d = rand2(1, 10)
    
    w = a - c*cos(u)*cos(v)
    
    x = d*(c - a*cos(u)*cos(v)) + b*b*cos(u)
    y = b*sin(u)*(a - d*cos(v))
    z = b*sin(v)*(c*cos(u) - d)
    
    x = x/w
    y = y/w
    z = z/w

    (10)最后再补充下,圆环可以看做是一个圆圈绕一个轴旋转生成的,所以可以有以下脚本代码

    vertices = D1:100 D2:100
    
    u = from (0) to (2*PI) D1
    v = from 0 to (2*PI) D2
    
    r = 2
    m = rand2(r, r*10)
    
    n = r*cos(u) + m
    y = r*sin(u)
    
    x = n*cos(v)
    z = n*sin(v)

     (11)补充一种环曲面:Bohemian

    #http://http://www.mathcurve.com/surfaces/boheme/boheme.shtml
    
    vertices = D1:100 D2:100
    
    u = from 0 to (2*PI) D1
    v = from 0 to (PI*2) D2
    
    a = rand2(1, 10)
    b = rand2(1, 10)
    
    x = a*cos(u)
    y = b*cos(v)
    z = a*sin(u) + b*sin(v)

  • 相关阅读:
    JS中原型链的理解
    CSS3的笔记总结
    那些牛掰的 HTML5的API(二)
    初识 HTML5(一)
    jQuery基础知识点(下)
    jQuery基础知识点(DOM操作)
    jQuery基础知识点(上)
    [译]GC专家系列2:Java 垃圾回收的监控
    [译]GC专家系列1: 理解Java垃圾回收
    [译]深入理解JVM
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3875181.html
Copyright © 2020-2023  润新知