一、表达式树入门
Lambda表达式树很复杂,从概念上很难理解清楚,一句话,表达式树是一种数据结构!这里我们通过下面的这个例子来理解一下表达式树,你就能看个大概:
lambda表达式树动态创建方法
static void Main(string[] args) { //i*j+w*x ParameterExpression a = Expression.Parameter(typeof(int),"i"); //创建一个表达式树中的参数,作为一个节点,这里是最下层的节点 ParameterExpression b = Expression.Parameter(typeof(int),"j"); BinaryExpression r1 = Expression.Multiply(a,b); //这里i*j,生成表达式树中的一个节点,比上面节点高一级 ParameterExpression c = Expression.Parameter(typeof(int), "w"); ParameterExpression d = Expression.Parameter(typeof(int), "x"); BinaryExpression r2 = Expression.Multiply(c, d); BinaryExpression result = Expression.Add(r1,r2); //运算两个中级节点,产生终结点 Expression<Func<int, int, int, int, int>> lambda = Expression.Lambda<Func<int, int, int, int, int>>(result,a,b,c,d); Console.WriteLine(lambda + ""); //输出‘(i,j,w,x)=>((i*j)+(w*x))’,z对应参数b,p对应参数a Func<int, int, int, int, int> f= lambda.Compile(); //将表达式树描述的lambda表达式,编译为可执行代码,并生成该lambda表达式的委托; Console.WriteLine(f(1, 1, 1, 1) + ""); //输出结果2 Console.ReadKey(); }
以上代码构成的Lambda表达式树如下图:
二、常见的一些表达式树用法
ConstantExpression :表示具有常量值的表达式
我们构建一个控制台应用程序
ConstantExpression _constExp = Expression.Constant("aaa",typeof(string));//一个常量 //Console.Writeline("aaa"); MethodCallExpression _methodCallexp=Expression.Call(typeof(Console).GetMethod("WriteLine",new Type[]{typeof(string)}),_constExp); Expression<Action> consoleLambdaExp = Expression.Lambda<Action>(_methodCallexp); consoleLambdaExp.Compile()(); Console.ReadLine();
输出一个常量,看一下结果
ParameterExpression :表示一个参数表达式
ParameterExpression _parameExp = Expression.Parameter(typeof(string), "MyParameter"); MethodCallExpression _methodCallexpP = Expression.Call(typeof(Console).GetMethod("WriteLine", new Type[] { typeof(string) }), _parameExp); Expression<Action<string>> _consStringExp = Expression.Lambda<Action<string>>(_methodCallexpP, _parameExp); _consStringExp.Compile()("Hello!!");
输出结果:
MethodCallExpression调用静态方法
我们建一个返回string的静态方法,传入一个object类型的值
public static string ConsStr(object str) { string _str = str + "aa"; Console.WriteLine(_str); return _str; }
ParameterExpression _paraObj = Expression.Parameter(typeof(object), "objPara"); MethodCallExpression _MyStateMethod = Expression.Call(typeof(Program).GetMethod("ConsStr", new Type[] { typeof(object) }), _paraObj); Expression<Func<object, string>> _meyLambdaState = Expression.Lambda<Func<object, string>>(_MyStateMethod, _paraObj); string s_tr = _meyLambdaState.Compile()("ni Hao"); Console.WriteLine("返回值: " + s_tr);
输出结果:
MethodCallExpression调用实例方法
我们写一个非静态方法
public string ConsStr2(object str) { string _str = str + "aa"; Console.WriteLine(_str); return _str; }
Expression.Call为我们提供了我们想要的重载:
Program _pg = new Program(); ParameterExpression _paraObj2 = Expression.Parameter(typeof(object), "objPara"); MethodCallExpression _MyStateMethod2 = Expression.Call(Expression.Constant(_pg), typeof(Program).GetMethod("ConsStr2"), _paraObj2); Expression<Func<object, string>> _meyLambdaState2 = Expression.Lambda<Func<object, string>>(_MyStateMethod2, _paraObj2); string s_tr2 = _meyLambdaState.Compile()("you shi ni "); Console.WriteLine("返回值: " + s_tr2);
输出结果:
UnaryExpression:一元运算符表达式
用UnaryExpression做一个5--的表达式:
ConstantExpression _consNum = Expression.Constant(5, typeof(int)); UnaryExpression _unaryPlus = Expression.Decrement(_consNum); Expression<Func<int>> _unaryLam = Expression.Lambda<Func<int>>(_unaryPlus); Console.WriteLine(_unaryLam.Compile()());
输出结果:
BinaryExpression : 二元运算符表达式
BinaryExpression 我们做一个a+b的例子
ParameterExpression _ParaA = Expression.Parameter(typeof(int), "a"); ParameterExpression _ParaB = Expression.Parameter(typeof(int), "b"); BinaryExpression _BinaAdd = Expression.Add(_ParaA, _ParaB); Expression<Func<int, int, int>> _MyBinaryAddLamb = Expression.Lambda<Func<int, int, int>>(_BinaAdd, new ParameterExpression[] { _ParaA, _ParaB }); Console.WriteLine("表达式: "+ _MyBinaryAddLamb); Console.WriteLine(_MyBinaryAddLamb.Compile()(3, 6));
输出结果:
两个表达式也可以放在一起:(a+b)*(--c)
ParameterExpression _ParaA = Expression.Parameter(typeof(int), "a"); ParameterExpression _ParaB = Expression.Parameter(typeof(int), "b"); BinaryExpression _BinaAdd = Expression.Add(_ParaA, _ParaB); //a+b ParameterExpression _paraC = Expression.Parameter(typeof(int), "c"); UnaryExpression _paraDecr = Expression.Decrement(_paraC); //(a+b)*(--c) BinaryExpression _binaMultiply = Expression.Multiply(_BinaAdd, _paraDecr); Expression<Func<int, int, int, int>> _MyBinaryLamb = Expression.Lambda<Func<int, int, int, int>>(_binaMultiply, new ParameterExpression[] { _ParaA, _ParaB, _paraC }); Console.WriteLine("表达式: "+ _MyBinaryLamb); Console.WriteLine(_MyBinaryLamb.Compile()(3, 6, 5));
输出结果:
三、使用表达式树访问属性
表达式树可以替换反射,但是未必性能就好,要实际测试一下,另外注意Compile调用过程涉及动态代码生成,所以出于性能考虑最好缓存一下生成的表达式树
接下来用Expression Tree的方式完成属性赋值和取值的操作,它们实现在如下两个静态方法中:CreateGetPropertyValueFunc和CreateSetPropertyValueAction。下面是CreateGetPropertyValueFunc的定义,它返回的是一个Func<object.object>委托:
public static Func<object, object> CreateGetPropertyValueFunc() {
var property = typeof(IFoo).GetProperty("Bar"); var target = Expression.Parameter(typeof(object)); var castTarget = Expression.Convert(target, typeof(IFoo)); var getPropertyValue = Expression.Property(castTarget, property); var castPropertyvalue = Expression.Convert(getPropertyValue, typeof(object)); return Expression.Lambda<Func<object, object>>(castPropertyvalue , target).Compile(); }
下面是CreateSetPropertyValueAction方法,返回一个Action<object.object>委托:
public static Action<object, object> CreateSetPropertyValueAction() { var property = typeof(IFoo).GetProperty("Bar"); var target = Expression.Parameter(typeof(object)); var propertyValue = Expression.Parameter(typeof(object)); var castTarget = Expression.Convert(target, typeof(IFoo)); var castPropertyValue = Expression.Convert(propertyValue, property.PropertyType); var setPropertyValue = Expression.Call(castTarget, property.GetSetMethod(), castPropertyValue); return Expression.Lambda<Action<object, object>>(setPropertyValue, target, propertyValue).Compile(); }
注:表达式树的水很深,此处只是入门,以后仍需继续研究使用~