• bzoj4326 运输计划


    4326: NOIP2015 运输计划

    Time Limit: 30 Sec  Memory Limit: 128 MB

    Description

    公元 2044 年,人类进入了宇宙纪元。L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球。小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰。为了鼓励科技创新, L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的物流公司的阶段性工作就完成了。如果小 P 可以自由选择将哪一条航道改造成虫洞, 试求出小 P 的物流公司完成阶段性工作所需要的最短时间是多少?

     

    Input

    第一行包括两个正整数 n,m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。接下来 n−1 行描述航道的建设情况,其中第 i 行包含三个整数 ai,bi 和 ti,表示第 i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。数据保证 1≤ai,bi≤n 且 0≤ti≤1000。接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个运输计划是从 uj 号星球飞往 vj号星球。数据保证 1≤ui,vi≤n

     

    Output

    输出文件只包含一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

     

    Sample Input

    6 3
    1 2 3
    1 6 4
    3 1 7
    4 3 6
    3 5 5
    3 6
    2 5
    4 5

    Sample Output

    11

    HINT


    将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。

    将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。

    将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。

    将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。

    将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。

    故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。
     
     

    Tips:

      本题还是比较坑的,代码写的弱一点会超时;

      此题可以看出是具有二分性质的;

      但是二分的判断做到O(n)或O(m)看起来会很难;

      由于这是一棵树,我们需要知道两点间的距离可以用tarjan求lca求出距离;

      对于每个二分的答案x;

      显然<=x的距离是可以不用管它的;

      将>=x的距离的边数记下来;

      将>=x的距离的边的起点终点加一,lca减2;(差分思想自寻百度,我也讲不清);

      dfs一遍,找到 经过边数=记下来的边数  的边,取边权最大值的;

      判断最大距离-取边权最大值是否小于等于x即可;

    Code:

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<iostream>
    #define MAXN 600008
    using namespace std;
    int n,m,head[MAXN],next[MAXN],vet[MAXN],len[MAXN],dis[MAXN],ance[MAXN];
    int head1[MAXN],next1[MAXN],vet1[MAXN],hh[MAXN],ans[MAXN];
    int color[MAXN],fa[MAXN],tot,tot1,l,r,res,ff[MAXN],tmp[MAXN];
    
    int find(int x){
        if(fa[x]==x) return x;
        else return fa[x]=find(fa[x]);
    }
    
    void add1(int x,int y){
        tot1++;
        hh[tot1]=x;
        next1[tot1]=head1[x];
        head1[x]=tot1;
        vet1[tot1]=y;
    }
    
    void add(int x,int y,int z){
        tot++;
        next[tot]=head[x];
        head[x]=tot;
        vet[tot]=y;
        len[tot]=z;
    }
    
    void tarjan(int u){
        color[u]=1;
        for(int i=head[u];i!=0;i=next[i]){
            int y=vet[i];
            if(!color[y]){
                dis[y]=dis[u]+len[i];
                tarjan(y);
                fa[y]=u;
            }
        }
        for(int i=head1[u];i!=0;i=next1[i]){
            int y=vet1[i];
            if(color[y]){
                ance[(i+1)/2]=find(y);
                ans[(i+1)/2]=dis[u]+dis[y]-2*dis[ance[(i+1)/2]];
                r=max(ans[(i+1)/2],r);
            }
        }
    }
    
    void dfs(int u){
        color[u]=1;
        for(int i=head[u];i!=0;i=next[i]){
            int y=vet[i];
            if(!color[y]){
                ff[y]=len[i];
                dfs(y);
                tmp[u]+=tmp[y];
            }
        }
    }
    
    bool check(int flag){
        int ma=0,sum=0,g=0;
        memset(color,0,sizeof(color));
        memset(tmp,0,sizeof(tmp));
        for(int i=1;i<=m;i++){
            if(ans[i]>flag){
                tmp[hh[i*2]]++;
                tmp[vet1[i*2]]++;
                tmp[ance[i]]-=2;
                ma=max(ans[i],ma);
                sum++;
            }
        }
        dfs(1);
        for(int i=1;i<=n;i++){
            if(tmp[i]==sum){
                g=max(g,ff[i]);
            }
        }
        return (ma-g)<=flag;
    }
    
    void init(){
        tot=tot1=0; r=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++){
            fa[i]=i;
        }
        for(int i=1;i<n;i++){
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
            add(y,x,z);
        }
        for(int i=1;i<=m;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            add1(x,y);
            add1(y,x);
        }
    }
    
    void solve(){
        tarjan(1);
        l=0; res=r;
        while(l<=r){
            int mid=(l+r) >> 1;
            if(check(mid)){
                res=mid;
                r=mid-1;
            }else{
                l=mid+1;
            }
        }
    }
    
    void print(){
        printf("%d",res);
    }
    
    int main(){
        init();
        solve();
        print();
    }
  • 相关阅读:
    python限定方法参数类型、返回值类型、变量类型等
    双拼自然码
    关于将汉语拼音字母“ü”改成“v”的设想和建议
    数据库转模型图
    python中的捕获异常、异常跟踪
    内部教师爆料:某些民办学校真正的内幕
    炸薯条
    IntelliJ IDEA添加JavaDOC注释 方法 快捷键
    java获取当前路径的方法
    java获取全部子类或接口的全部实现
  • 原文地址:https://www.cnblogs.com/WQHui/p/7502183.html
Copyright © 2020-2023  润新知