• POJ 3694Network(Tarjan边双联通分量 + 缩点 + LCA并查集维护)


    【题意】:

    有N个结点M条边的图,有Q次操作,每次操作在点x, y之间加一条边,加完E(x, y)后还有几个桥(割边),每次操作会累积,影响下一次操作。

    【思路】:

    先用Tarjan求出一开始总的桥的数量,然后求边双联通分量并记录每个结点v所属的连通分量号c[v],之后进行缩点,将每个双联通分量作为都缩成一个新点,如果新点之间可以连边就连边

    (能不能连边取决于原图,我就不多bb辽,XD),形成新图。

    对于每次询问x, y,判断c[x]!=c[y],然后从c[x]和c[y]分别向上寻找父结点,找到LCA,对c[x]寻找时经过的边数+对c[y]寻找时经过的边数==应该减去的桥数

    考虑到每次操作的累加性,已经在之前操作中经过的边已经不是桥,不能在后续操作中再进行统计,所以使用并查集,每当c[x],c[y]找到lca时,就将pre[c[x]] = pre[c[y]] = lca。

    求LCA时涉及几乎涉及到每条边,就不使用倍增LCA(主要是我不会??),而是用定义的方法。

    下面上代码,第一个代码是求了桥,然后再进行求强联通分量,再加边。 第二个是先求强联通分量(当然是有限制的,不然因为整个图就是联通的,肯定就一个SCC了),再加边。

    个人倾向于第二种袄,而且速度快

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <map>
    #include <map>
    using namespace std;
    
    const int maxn = 1e6 + 5;
    const int maxm = maxn<<1;
    struct edge{
        int to, next;
    } ed[maxm<<1];
    int n, m, q;
    int head[maxn], tot;
    int dfn[maxn], low[maxn], num, ans, c[maxn], dcc;
    int hc[maxn], vc[maxm<<1], nc[maxm<<1], tc;
    int pre[maxn], fa[maxn], dep[maxn], pass;
    bool brige[maxn], vis[maxn];
    inline void init(){
        memset( head, -1, sizeof(head) );
        memset( dfn, 0, sizeof(dfn) );
        memset( brige, 0, sizeof(brige) );
        memset( c, 0, sizeof(c) );
        memset( vis, 0, sizeof(vis) );
        tot = 1;
    }
    
    inline void add( int u, int v ){
        ed[++tot].to = v; ed[tot].next = head[u]; head[u] = tot;
        ed[++tot].to = u; ed[tot].next = head[v]; head[v] = tot;
    }
    
    inline int min( int a, int b ){
        return a<b ? a:b;
    }
    
    inline void tarjan( int x, int in_edge ){
        dfn[x] = low[x] = ++num;
        for( int i=head[x]; i!=-1; i=ed[i].next ){
            int y = ed[i].to;
            if(!dfn[y]){
                tarjan(y, i);
                low[x] = min(low[x], low[y]);
                if( dfn[x]<low[y] ){
                    brige[i] = brige[i^1] = 1;          
                    ans ++;
                }
            }else if( i!=(in_edge^1) ) low[x] = min(low[x], dfn[y]);
        }
    }
    
    inline void add_dcc( int u, int v ){
        vc[++tc] = v;
        nc[tc] = hc[u];
        hc[u] = tc;
    }
    
    inline void dfs_dcc( int x ){
        c[x] = dcc;
        for( int i=head[x]; i!=-1; i=ed[i].next ){
            int y = ed[i].to;
            if( brige[i] || c[y] ) continue;
            dfs_dcc(y);
        }
    }
    
    inline int find( int x ){
        return pre[x]==x ? x:pre[x] = find(pre[x]);
    }
    
    inline void dfs_lca( int x ){               //结点分层
        pre[x] = x;
        for( int i=hc[x]; i!=-1; i=nc[i] ){
            int y = vc[i];
            if( y!=fa[x] ){
                fa[y] = x;
                dep[y] = dep[x] + 1;
                dfs_lca(y);
            }
        }
    }
    
    inline void LCA( int x, int y ){
        pass = 0;
        x = find(x); y = find(y);           //直接将x,y向上寻找的路径中已经计算过得边略过
        while( dep[y]!=dep[x] ){
            if( dep[y]>dep[x] ){
                int f = find(fa[y]);             //当pre[y] == y时f是y的父亲,当pre[y]在y上方时,f就是相当于爷爷或者更高的祖辈
                y = pre[y] = f;             //不能写成pre[y] = y = f这样y先被赋值,pre[y]则改变的是赋值后的y即pre[f]被改变
                pass ++;   
            }else{
                int f = find(fa[x]);
                x = pre[x] = f;
                pass++;
            }
        }
        while( find(x)!=find(y) ){
            pre[x] = find(fa[x]);
            pre[y] = find(fa[y]);
            x = pre[x]; y = pre[y];
            pass += 2;
        }
    }
    
    int main(){
        // freopen("in.txt", "r", stdin);
        int kase = 1;
        while( ~scanf("%d%d", &n, &m), n||m ){
            init();
            for( int i=0; i<m; i++ ){
                int u, v;
                scanf("%d%d", &u, &v);
                add(u, v);
            }
            ans = dcc = num = 0;
            tarjan(1, 0);
            for( int i=1; i<=n; i++ ) if( !c[i] ) ++dcc, dfs_dcc(i);
            memset( hc, -1, sizeof(hc) );
            tc = 1;
            //不要使用map作为标记,遍历边进行新图的加边操作,map会TLE
            for( int u=1; u<=n; u++ ){
                for( int i=head[u]; i!=-1; i=ed[i].next ){
                    int v = ed[i].to;
                    if( c[u]==c[v] ) continue;
                    add_dcc(c[u], c[v]);
                }
            }
            ans = tc>>1;
            dep[1] = 1;
            fa[1] = 0;
            dfs_lca(1);           
            scanf("%d", &q);
            printf("Case %d:
    ", kase++);
            while( q-- ){
                int x, y;
                scanf("%d%d", &x, &y);
                if( c[x]!=c[y] ){
                    LCA(c[x], c[y]);
                    ans -= pass;
                }
                printf("%d
    ", ans);
            }
            puts("");
        }
    
        return 0;
    }
    先求桥,再求边双联通,再连边进行LCA
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <map>
    #include <map>
    using namespace std;
    
    const int maxn = 1e6 + 5;
    const int maxm = maxn<<1;
    struct edge{
        int to, next;
    } ed[maxm<<1];
    int n, m, q;
    int head[maxn], tot, st[maxn];
    int dfn[maxn], low[maxn], num, ans, c[maxn], dcc;
    int hc[maxn], vc[maxm<<1], nc[maxm<<1], tc;
    int pre[maxn], fa[maxn], dep[maxn], pass;
    bool ins[maxn], vis[maxn];
    inline void init(){
        memset( head, -1, sizeof(head) );
        memset( dfn, 0, sizeof(dfn) );
        memset( c, 0, sizeof(c) );
        memset( vis, 0, sizeof(vis) );
        tot = 1;
    }
    
    inline void add( int u, int v ){
        ed[++tot].to = v; ed[tot].next = head[u]; head[u] = tot;
        ed[++tot].to = u; ed[tot].next = head[v]; head[v] = tot;
    }
    
    inline int min( int a, int b ){
        return a<b ? a:b;
    }
    
    inline void tarjan( int x, int in_edge ){
        dfn[x] = low[x] = ++num;
        ins[x] = 1;
        st[++st[0]] = x;
        for( int i=head[x]; i!=-1; i=ed[i].next ){
            int y = ed[i].to;
            if( i==(in_edge^1) ) continue;
            if(!dfn[y]){
                tarjan(y, i);
                low[x] = min(low[x], low[y]);
            }else if( ins[y] ) low[x] = min(low[x], dfn[y]);
        }
        if( dfn[x]==low[x] ){
            dcc ++;
            int p;
            do{
                p = st[st[0]--];
                c[p] = dcc;
                ins[p] = 0;
            }while( p!=x );
        }
    }
    
    inline void add_dcc( int u, int v ){
        vc[++tc] = v;
        nc[tc] = hc[u];
        hc[u] = tc;
    }
    
    inline int find( int x ){
        return pre[x]==x ? x:pre[x] = find(pre[x]);
    }
    
    inline void dfs_lca( int x ){
        pre[x] = x;
        for( int i=hc[x]; i!=-1; i=nc[i] ){
            int y = vc[i];
            if( y!=fa[x] ){
                fa[y] = x;
                dep[y] = dep[x] + 1;
                dfs_lca(y);
            }
        }
    }
    
    inline void LCA( int x, int y ){
        pass = 0;
        x = find(x); y = find(y);
        while( dep[y]!=dep[x] ){
            if( dep[y]>dep[x] ){
                int f = find(fa[y]);             //当pre[y] == y时f是y的父亲,当pre[y]在y上方时,f就是相当于爷爷或者更高的祖辈
                y = pre[y] = f;             //不能写成pre[y] = y = f这样y先被赋值,pre[y]则改变的是赋值后的y即pre[f]被改变
                pass ++;   
            }else{
                int f = find(fa[x]);
                x = pre[x] = f;
                pass++;
            }
        }
        while( find(x)!=find(y) ){
            pre[x] = find(fa[x]);
            pre[y] = find(fa[y]);
            x = pre[x]; y = pre[y];
            pass += 2;
        }
    }
    
    int main(){
        // freopen("in.txt", "r", stdin);
        int kase = 1;
        while( ~scanf("%d%d", &n, &m), n||m ){
            init();
            for( int i=0; i<m; i++ ){
                int u, v;
                scanf("%d%d", &u, &v);
                add(u, v);
            }
            ans = dcc = num = 0;
            for( int i=1; i<=n; i++ ) if(!dfn[i]) tarjan(1, 0);
            memset( hc, -1, sizeof(hc) );
            tc = 1;
            for( int u=1; u<=n; u++ ){
                for( int i=head[u]; ~i; i=ed[i].next ){
                    int v = ed[i].to;
                    if( c[u]==c[v] ) continue;
                    add_dcc(c[u], c[v]);
                }
            }
            ans = tc>>1;
            dep[1] = 1;
            fa[1] = 0;
            dfs_lca(1);
            scanf("%d", &q);
            printf("Case %d:
    ", kase++);
            while( q-- ){
                int x, y;
                scanf("%d%d", &x, &y);
                if( c[x]!=c[y] ){
                    LCA(c[x], c[y]);
                    ans -= pass;
                }
                printf("%d
    ", ans);
            }
            puts("");
        }
    
         return 0;
    }
    求强联通分量,再加边,进行LCA
  • 相关阅读:
    csp2020游记
    agc006_f Blackout
    CF1368G Shifting Dominoes
    AtCoder Grand Contest 009 简要题解
    Codeforces Round #666 (Div. 1)
    CSP 2019 树的重心
    Luogu-P4859 已经没什么好害怕的了
    2020.9.17 校内测试
    CF379F New Year Tree
    图论(小结论)
  • 原文地址:https://www.cnblogs.com/WAautomaton/p/11176979.html
Copyright © 2020-2023  润新知