https://codeforces.com/contest/1117/problem/D
题意
有n个特殊宝石(n<=1e18),每个特殊宝石可以分解成m个普通宝石(m<=100),问组成n颗宝石有多少种方法
题解
- 数据很大:找规律or矩阵快速幂
- 转移方程: dp[i]=dp[i-1]+dp[i-m]
- 因为n<=1e18可以用矩阵快速幂
- 构造矩阵如图:
[left[
egin{matrix}
f[i-1] & f[i-2] & cdots & f[i-m] \
end{matrix}
ight]
*
left[
egin{matrix}
1 & 1 &0 & cdots & 0 \
0 & 0 &1 & cdots & 0 \
vdots & vdots &vdots &ddots & vdots \
0 & 0 &0 &cdots & 1 \
1 & 0 &0 &cdots & 0 \
end{matrix}
ight]
=
left[
egin{matrix}
f[i] & f[i-1] & cdots & f[i-m+1] \
end{matrix}
ight]
]
代码(矩阵快速幂板子)
#include<bits/stdc++.h>
#define P 1000000007
#define ll long long
#define M 105
using namespace std;
struct N{
ll a[M][M];
};
ll m,n,i,j;
N mul(N x,N y){
N z;
memset(z.a,0,sizeof(z.a));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++){
z.a[i][j]+=x.a[i][k]*y.a[k][j]%P;
z.a[i][j]%=P;
}
return z;
}
N pw(N bs,ll x){
N y;
memset(y.a,0,sizeof(y.a));
for(int i=1;i<=n;i++)y.a[i][i]=1;
while(x){
if(x&1)y=mul(y,bs);
bs=mul(bs,bs);
x>>=1;
}
return y;
}
int main(){
cin>>m>>n;
N f;memset(f.a,0,sizeof(f.a));
f.a[1][1]=1;f.a[n][1]=1;
for(i=1,j=2;j<=n;j++,i++)f.a[i][j]=1;
f=pw(f,m);
cout<<f.a[1][1]%P;
}