Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
The treats are interesting for many reasons:
- The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
- Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
- The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
- Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
Line 1: The maximum revenue FJ can achieve by selling the treats
Sample Input
5
1
3
1
5
2
Sample Output
43
Hint
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
Source
题意:大概意思是,一批红酒开始有自身的价值,每天卖出第一个或最后一个,并且卖出的价值等于 原先的价值*存在的年数,求卖完所有的红酒能获得的最大价值
看完下面的提示立刻就想到了区间dp,dp[i][j]表示从i到j的最大价值,状态转移方程为dp[i][j]=max(dp[i+1][j]+a[i]*year,dp[i][j-1]+a[j]*a[j]*year);
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<vector> 5 #include<set> 6 #include<algorithm> 7 #include<cmath> 8 #include<stdlib.h> 9 #include<map> 10 using namespace std; 11 #define N 2006 12 int n; 13 int a[N]; 14 int dp[N][N]; 15 int main() 16 { 17 while(scanf("%d",&n)==1) 18 { 19 memset(dp,0,sizeof(dp)); 20 for(int i=1;i<=n;i++) 21 { 22 scanf("%d",&a[i]); 23 dp[i][i]=a[i]*n; 24 } 25 26 for(int len=1;len<n;len++) 27 { 28 for(int i=1;i+len<=n;i++) 29 { 30 int j=i+len; 31 dp[i][j]=max(dp[i+1][j]+a[i]*(n-(j-i+1)+1),dp[i][j-1]+a[j]*(n-(j-i+1)+1)); 32 } 33 } 34 35 36 printf("%d ",dp[1][n]); 37 } 38 return 0; 39 }
另外一种写法
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<vector> 5 #include<set> 6 #include<algorithm> 7 #include<cmath> 8 #include<stdlib.h> 9 #include<map> 10 using namespace std; 11 #define N 2006 12 int n; 13 int a[N]; 14 int dp[N][N]; 15 int main() 16 { 17 while(scanf("%d",&n)==1) 18 { 19 for(int i=1;i<=n;i++) scanf("%d",&a[i]); 20 21 memset(dp,0,sizeof(dp)); 22 for(int i=n;i>=1;i--) 23 { 24 for(int j=i;j<=n;j++) 25 { 26 dp[i][j]=max(dp[i+1][j]+a[i]*(n-(j-i+1)+1),dp[i][j-1]+a[j]*(n-(j-i+1)+1)); 27 } 28 } 29 printf("%d ",dp[1][n]); 30 } 31 return 0; 32 }