• poj 3186 Treats for the Cows(区间dp)


    Description

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. 

    The treats are interesting for many reasons:
    • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
    • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
    • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
    • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
    Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? 

    The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    Output

    Line 1: The maximum revenue FJ can achieve by selling the treats

    Sample Input

    5
    1
    3
    1
    5
    2

    Sample Output

    43

    Hint

    Explanation of the sample: 

    Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2). 

    FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

    Source

     
    题意:大概意思是,一批红酒开始有自身的价值,每天卖出第一个或最后一个,并且卖出的价值等于 原先的价值*存在的年数,求卖完所有的红酒能获得的最大价值
     
    看完下面的提示立刻就想到了区间dp,dp[i][j]表示从i到j的最大价值,状态转移方程为dp[i][j]=max(dp[i+1][j]+a[i]*year,dp[i][j-1]+a[j]*a[j]*year);
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<vector>
     5 #include<set>
     6 #include<algorithm>
     7 #include<cmath>
     8 #include<stdlib.h>
     9 #include<map>
    10 using namespace std;
    11 #define N 2006
    12 int n;
    13 int a[N];
    14 int dp[N][N];
    15 int main()
    16 {
    17     while(scanf("%d",&n)==1)
    18     {
    19         memset(dp,0,sizeof(dp));
    20         for(int i=1;i<=n;i++) 
    21         {
    22            scanf("%d",&a[i]); 
    23            dp[i][i]=a[i]*n;
    24           }
    25     
    26         for(int len=1;len<n;len++)
    27         {
    28             for(int i=1;i+len<=n;i++)
    29             {
    30                 int j=i+len;
    31                 dp[i][j]=max(dp[i+1][j]+a[i]*(n-(j-i+1)+1),dp[i][j-1]+a[j]*(n-(j-i+1)+1));
    32             }
    33         }
    34         
    35         
    36         printf("%d
    ",dp[1][n]);
    37     }
    38     return 0;
    39 }
    View Code

    另外一种写法

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<vector>
     5 #include<set>
     6 #include<algorithm>
     7 #include<cmath>
     8 #include<stdlib.h>
     9 #include<map>
    10 using namespace std;
    11 #define N 2006
    12 int n;
    13 int a[N];
    14 int dp[N][N];
    15 int main()
    16 {
    17     while(scanf("%d",&n)==1)
    18     {
    19         for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    20         
    21         memset(dp,0,sizeof(dp));
    22         for(int i=n;i>=1;i--)
    23         {
    24             for(int j=i;j<=n;j++)
    25             {
    26                    dp[i][j]=max(dp[i+1][j]+a[i]*(n-(j-i+1)+1),dp[i][j-1]+a[j]*(n-(j-i+1)+1));
    27                 }
    28         }
    29         printf("%d
    ",dp[1][n]);
    30     }
    31     return 0;
    32 }
    View Code
  • 相关阅读:
    Python学习笔记六:集合
    Python学习笔记五:字符串常用操作,字典,三级菜单实例
    Python学习笔记四:列表,购物车程序实例
    Python学习笔记三:数据类型
    python学习笔记二:if语句及循环语句,断点,模块,pyc
    Python学习笔记一:第一个Python程序,变量,字符编码与二进制,用户交互程序
    JS教程:从0开始
    基于Token认证的多点登录和WebApi保护
    数据库高级对象(存储过程,事务,锁,游标,触发器)
    Sql基础(零基础学数据库_SqlServer版)
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4731203.html
Copyright © 2020-2023  润新知