• Week2 Programming Assignment: Linear Regression


    这是我Andrew NG的Week2的第一次编程作业,这其中有一些我所学到的东西,以博客的形式记录,随笔。

    收获:

    • 矩阵运算可以替代循环

    内容包括

    1. univariate下
      • univariate任务下一个demo:
      • 数据集绘制为图像
      • 损失函数计算
      • 梯度下降
    2. multivariate任务下
      • 损失函数代码,梯度下降代码与上述一致(实用矩阵和向量化,从一开始就兼容了多变量的情况)
      • normal equation替代梯度下降计算参数  
    3. 提交结果
    4. 分数
     1 function A = warmUpExercise()
     2 %WARMUPEXERCISE Example function in octave
     3 %   A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix
     4 
     5 A = [];
     6 % ============= YOUR CODE HERE ==============
     7 % Instructions: Return the 5x5 identity matrix 
     8 %               In octave, we return values by defining which variables
     9 %               represent the return values (at the top of the file)
    10 %               and then set them accordingly. 
    11 A=eye(5);
    12 % ===========================================
    13 end

    运行效果

     1 function plotData(x, y)
     2 %PLOTDATA Plots the data points x and y into a new figure 
     3 %   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
     4 %   population and profit.
     5 
     6 figure; % open a new figure window
     7 
     8 % ====================== YOUR CODE HERE ======================
     9 % Instructions: Plot the training data into a figure using the 
    10 %               "figure" and "plot" commands. Set the axes labels using
    11 %               the "xlabel" and "ylabel" commands. Assume the 
    12 %               population and revenue data have been passed in
    13 %               as the x and y arguments of this function.
    14 %
    15 % Hint: You can use the 'rx' option with plot to have the markers
    16 %       appear as red crosses. Furthermore, you can make the
    17 %       markers larger by using plot(..., 'rx', 'MarkerSize', 10);
    18 
    19 
    20 plot(x, y, 'rx', 'MarkerSize', 10); % Plot the data
    21 ylabel('Profit in $10,000s'); % Set the y?axis label
    22 xlabel('Population of City in 10,000s'); % Set the x?axis label
    23 % ============================================================
    24 
    25 end

    运行效果

     1 function J = computeCost(X, y, theta)
     2 %COMPUTECOST Compute cost for linear regression
     3 %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
     4 %   parameter for linear regression to fit the data points in X and y
     5 
     6 % Initialize some useful values
     7 m = length(y); % number of training examples
     8 
     9 % You need to return the following variables correctly 
    10 J = 0;
    11 
    12 % ====================== YOUR CODE HERE ======================
    13 % Instructions: Compute the cost of a particular choice of theta
    14 %               You should set J to the cost.
    15 h_theta = X*theta;
    16 sum_vector =ones(1,m);
    17 J=sum_vector*((h_theta-y).^2)/(2*m);
    18 
    19 
    20 
    21 % =========================================================================
    22 
    23 end

    运行效果

     1 function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
     2 %GRADIENTDESCENT Performs gradient descent to learn theta
     3 %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
     4 %   taking num_iters gradient steps with learning rate alpha
     5 
     6 % Initialize some useful values
     7 m = length(y); % number of training examples
     8 J_history = zeros(num_iters, 1);
     9 
    10 for iter = 1:num_iters
    11 
    12     % ====================== YOUR CODE HERE ======================
    13     % Instructions: Perform a single gradient step on the parameter vector
    14     %               theta. 
    15     %
    16     % Hint: While debugging, it can be useful to print out the values
    17     %       of the cost function (computeCost) and gradient here.
    18     %
    19     h_theta = X*theta;
    20     errors_vector=h_theta-y;
    21     theta_change = (X'*errors_vector)*alpha/(m);
    22     theta=theta-theta_change;
    23     % ============================================================
    24     
    25     % Save the cost J in every iteration    
    26     J_history(iter) = computeCost(X, y, theta);
    27 
    28 end
    29 
    30 end

    运行效果

     

     进行数据拟合并预测

     损失函数三维立体图像

    等高线

     1 function [theta] = normalEqn(X, y)
     2 %NORMALEQN Computes the closed-form solution to linear regression 
     3 %   NORMALEQN(X,y) computes the closed-form solution to linear 
     4 %   regression using the normal equations.
     5 
     6 theta = zeros(size(X, 2), 1);
     7 
     8 % ====================== YOUR CODE HERE ======================
     9 % Instructions: Complete the code to compute the closed form solution
    10 %               to linear regression and put the result in theta.
    11 %
    12 
    13 % ---------------------- Sample Solution ----------------------
    14 
    15 
    16 theta=pinv(X'*X)*X'*y;
    17 
    18 % -------------------------------------------------------------
    19 
    20 
    21 % ============================================================
    22 
    23 end

    computeCostMulti和gradientDescentMulti与上面univariate一致

    最终结果

     1 >> submit
     2 == Submitting solutions | Linear Regression with Multiple Variables...
     3 Use token from last successful submission (yuhang.tao.email@gmail.com)? (Y/n): Y
     4 == 
     5 ==                                   Part Name |     Score | Feedback
     6 ==                                   --------- |     ----- | --------
     7 ==                            Warm-up Exercise |  10 /  10 | Nice work!
     8 ==           Computing Cost (for One Variable) |  40 /  40 | Nice work!
     9 ==         Gradient Descent (for One Variable) |  50 /  50 | Nice work!
    10 ==                       Feature Normalization |   0 /   0 | Nice work!
    11 ==     Computing Cost (for Multiple Variables) |   0 /   0 | Nice work!
    12 ==   Gradient Descent (for Multiple Variables) |   0 /   0 | Nice work!
    13 ==                            Normal Equations |   0 /   0 | Nice work!
    14 ==                                   --------------------------------
    15 ==                                             | 100 / 100 | 
    16 == 

    Coursera上不对选做题加分

  • 相关阅读:
    Mysql安装
    Python的内存管理机制
    Ansible模块
    Redis持久化
    Linux——ansible(1)
    Flask
    Flask入门
    ajax处理回调函数,用ajax向后台发送数据
    数字类型钱币转换为大写
    ligerui多选动态下拉框
  • 原文地址:https://www.cnblogs.com/TimeIsChoice/p/12155819.html
Copyright © 2020-2023  润新知