• POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)


    描述


    http://poj.org/problem?id=1065

    木棍有重量 w 和长度 l 两种属性,要使 l 和 w 同时单调不降,否则切割机器就要停一次,问最少停多少次(开始时停一次).

    Wooden Sticks
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 21277   Accepted: 9030

    Description

    There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
    (a) The setup time for the first wooden stick is 1 minute.
    (b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
    You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1 <= n <= 5000 , that represents the number of wooden sticks in the test case, and the second line contains 2n positive integers l1 , w1 , l2 , w2 ,..., ln , wn , each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.

    Output

    The output should contain the minimum setup time in minutes, one per line.

    Sample Input

    3 
    5 
    4 9 5 2 2 1 3 5 1 4 
    3 
    2 2 1 1 2 2 
    3 
    1 3 2 2 3 1 
    

    Sample Output

    2
    1
    3

    Source

    分析


    神原理...

    要求最少停多少次,就是要求单调不降的子序列的个数 x 最多为多少(每次停完都是一个单调不降的子序列),问题转化为求 x 的最小值.

    我们现将木棍按照其中一种属性升序(不降)排序,这时另一种属性的最长下降子序列的长度记为 L .可以证明 x >=L.(鸽笼原理).

    详细题解:

    http://www.hankcs.com/program/cpp/poj-1065-wooden-sticks.html

    注意:

    1.二分的边界.在找满足 a [ k ] <= -1 的 k 的最小值时,可能 dp 数组中已经没有 -1 了,也就是 n 个位置全部被占满了,也就是整个序列就是一个下降序列,此时会找到 n 的位置,再 -1 答案就错误了,所以开始的时候将 1 ~ n + 1 都赋为 -1 ,之后 dp 时查找在 1 ~ n 查找,因为 dp 结束之前最多是 n - 1 个,不会把 dp 数组填满,数组中一定还有 -1 ,就一定存在满足 a [ k ] <= v (v>0) 的 k ,计算总长度时在 1~n+1 查找,确保有满足 a [ k ] <= -1 的 k .

     1 #include<cstdio>
     2 #include<algorithm>
     3 #define read(a) a=getnum()
     4 #define for1(i,a,n) for(int i=(a);i<=(n);i++)
     5 using namespace std;
     6 
     7 const int maxn=5005;
     8 struct node {int l,w;}wood[maxn];
     9 int q,n;
    10 int dp[maxn];
    11 
    12 inline int getnum(){ int r=0,k=1;char c;for(c=getchar();c<'0'||c>'9';c=getchar()) if(c=='-') k=-1;for(;c>='0'&&c<='9';c=getchar()) r=r*10+c-'0'; return r*k; }
    13 
    14 bool comp(node x,node y) { return x.l<y.l; }
    15 
    16 int bsearch(int l,int r,int v)
    17 {
    18     while(l<r)
    19     {
    20         int m=l+(r-l)/2;
    21         if(dp[m]<=v) r=m;
    22         else l=m+1;
    23     }
    24     return l;
    25 }
    26 
    27 void solve()
    28 {
    29     sort(wood+1,wood+n+1,comp);
    30     for1(i,1,n+1) dp[i]=-1;
    31     for1(i,1,n)
    32     {
    33         int idx=bsearch(1,n,wood[i].w);
    34         dp[idx]=wood[i].w;
    35     }
    36     int ans=bsearch(1,n+1,-1)-1;
    37     printf("%d
    ",ans);
    38 }    
    39 
    40 void init()
    41 {
    42     read(q);
    43     while(q--)
    44     {
    45         read(n);
    46         for1(i,1,n) { read(wood[i].l); read(wood[i].w); }
    47         solve();
    48         
    49     }
    50 }
    51 
    52 int main()
    53 {
    54 #ifndef ONLINE_JUDGE
    55     freopen("wood.in","r",stdin);
    56     freopen("wood.out","w",stdout);
    57 #endif
    58     init();
    59 #ifndef ONLINE_JUDGE
    60     fclose(stdin);
    61     fclose(stdout);
    62     system("wood.out");
    63 #endif
    64     return 0;
    65 }
    View Code
  • 相关阅读:
    Struts 2 Overview
    Struts 2 Tutorial Basic MVC Architecture
    Struts 2 Tutorial
    Struts DynaActionForm example
    Struts – MappingDispatchAction Example
    Struts DispatchAction Example
    【置顶】本博客文章推荐和迁移声明
    Whatbeg's blog 文章列表
    如何实现并应用决策树算法?
    【2016读书】4月读书笔记
  • 原文地址:https://www.cnblogs.com/Sunnie69/p/5433750.html
Copyright © 2020-2023  润新知