• 《分布式之数据库缓存双写一致性方案解析》


     

    引言

    为什么写这篇文章?

    首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用。在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作。 

    但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存。又或者是先删除缓存,再更新数据库,其实大家存在很大的争议。目前没有一篇全面的博客,对这几种方案进行解析。于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章。

    文章结构

    本文由以下三个部分组成 1、讲解缓存更新策略 2、对每种策略进行缺点分析 3、针对缺点给出改进方案

    正文

    先做一个说明,从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。这种方案下,我们可以对存入缓存的数据设置过期时间,所有的写操作以数据库为准,对缓存操作只是尽最大努力即可。也就是说如果数据库写成功,缓存更新失败,那么只要到达过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。因此,接下来讨论的思路不依赖于给缓存设置过期时间这个方案。 在这里,我们讨论三种更新策略:

    • 1. 先更新数据库,再更新缓存 
    • 2. 先删除缓存,再更新数据库 
    • 3. 先更新数据库,再删除缓存 

    应该没人问我,为什么没有先更新缓存,再更新数据库这种策略。

    (1)先更新数据库,再更新缓存

    这套方案,大家是普遍反对的。为什么呢?有如下两点原因。 

    原因一(线程安全角度) 同时有请求A和请求B进行更新操作,那么会出现 

    • (1)线程A更新了数据库 
    • (2)线程B更新了数据库 
    • (3)线程B更新了缓存 
    • (4)线程A更新了缓存 

    这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。

    原因二(业务场景角度) 有如下两点: 

    • (1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。 
    • (2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

    接下来讨论的就是争议最大的,先删缓存,再更新数据库。还是先更新数据库,再删缓存的问题。

    (2)先删缓存,再更新数据库

    该方案会导致不一致的原因是。同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形: 

    • (1)请求A进行写操作,删除缓存 
    • (2)请求B查询发现缓存不存在 
    • (3)请求B去数据库查询得到旧值 
    • (4)请求B将旧值写入缓存 
    • (5)请求A将新值写入数据库 上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。 

    那么,如何解决呢?采用延时双删策略 伪代码如下

    public void write(String key,Object data){
            redis.delKey(key);
            db.updateData(data);
            Thread.sleep(1000);
            redis.delKey(key);
        }

    转化为中文描述就是 

    • (1)先淘汰缓存 
    • (2)再写数据库(这两步和原来一样) 
    • (3)休眠1秒,再次淘汰缓存 这么做,可以将1秒内所造成的缓存脏数据,再次删除。 

    那么,这个1秒怎么确定的,具体该休眠多久呢?

    针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。 

    如果你用了mysql的读写分离架构怎么办?

    ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。 

    • (1)请求A进行写操作,删除缓存 
    • (2)请求A将数据写入数据库了, 
    • (3)请求B查询缓存发现,缓存没有值 
    • (4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值 
    • (5)请求B将旧值写入缓存 
    • (6)数据库完成主从同步,从库变为新值 上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。 

    采用这种同步淘汰策略,吞吐量降低怎么办?

    ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。 

    第二次删除,如果删除失败怎么办?

    这是个非常好的问题,因为第二次删除失败,就会出现如下情形。还是有两个请求,一个请求A进行更新操作,另一个请求B进行查询操作,为了方便,假设是单库: 

    • (1)请求A进行写操作,删除缓存 
    • (2)请求B查询发现缓存不存在 
    • (3)请求B去数据库查询得到旧值 
    • (4)请求B将旧值写入缓存 
    • (5)请求A将新值写入数据库 
    • (6)请求A试图去删除请求B写入对缓存值,结果失败了。 ok,这也就是说。如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。 如何解决呢? 具体解决方案,且看博主对第(3)种更新策略的解析。

    (3)先更新数据库,再删缓存

    首先,先说一下。老外提出了一个缓存更新套路,名为《Cache-Aside pattern》。其中就指出 

    1. 失效:应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
    2. 命中:应用程序从cache中取数据,取到后返回。 
    3. 更新:先把数据存到数据库中,成功后,再让缓存失效。

    另外,知名社交网站facebook也在论文《Scaling Memcache at Facebook》中提出,他们用的也是先更新数据库,再删缓存的策略。 

    这种情况不存在并发问题么?

    不是的。假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生 

    (1)缓存刚好失效 

    (2)请求A查询数据库,得一个旧值 

    (3)请求B将新值写入数据库 

    (4)请求B删除缓存 

    (5)请求A将查到的旧值写入缓存 ok,如果发生上述情况,确实是会发生脏数据。 

    然而,发生这种情况的概率又有多少呢?

    发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。

    可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。 假设,有人非要抬杠,有强迫症,一定要解决怎么办? 

    如何解决上述并发问题?

    首先,给缓存设有效时间是一种方案。其次,采用策略(2)里给出的异步延时删除策略,保证读请求完成以后,再进行删除操作。 

    还有其他造成不一致的原因么?

    有的,这也是缓存更新策略(2)和缓存更新策略(3)都存在的一个问题,如果删缓存失败了怎么办,那不是会有不一致的情况出现么。比如一个写数据请求,然后写入数据库了,删缓存失败了,这会就出现不一致的情况了。这也是缓存更新策略(2)里留下的最后一个疑问。

    如何解决? 提供一个保障的重试机制即可,这里给出两套方案。 

    方案一: 如下图所示 

    流程如下所示 

    • (1)更新数据库数据; 
    • (2)缓存因为种种问题删除失败 
    • (3)将需要删除的key发送至消息队列 
    • (4)自己消费消息,获得需要删除的key 
    • (5)继续重试删除操作,直到成功 然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。 方案二: 

    流程如下图所示: 

    • (1)更新数据库数据 
    • (2)数据库会将操作信息写入binlog日志当中 
    • (3)订阅程序提取出所需要的数据以及key 
    • (4)另起一段非业务代码,获得该信息 
    • (5)尝试删除缓存操作,发现删除失败 
    • (6)将这些信息发送至消息队列 
    • (7)重新从消息队列中获得该数据,重试操作。

    备注说明:上述的订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。至于oracle中,博主目前不知道有没有现成中间件可以使用。另外,重试机制,博主是采用的是消息队列的方式。如果对一致性要求不是很高,直接在程序中另起一个线程,每隔一段时间去重试即可,这些大家可以灵活自由发挥,只是提供一个思路。

    总结

    本文其实是对目前互联网中已有的一致性方案,进行了一个总结。对于先删缓存,再更新数据库的更新策略,还有方案提出维护一个内存队列的方式,博主看了一下,觉得实现异常复杂,没有必要,因此没有必要在文中给出。最后,希望大家有所收获。

    参考文献

    1、主从DB与cache一致性 2、缓存更新的套路

    转自-https://zhuanlan.zhihu.com/p/59167071

  • 相关阅读:
    上传图片,将图片保存在腾讯云(2种方式)
    由ping所引发的思考~
    php面试上机题(2018-3-3)
    【八】jqeury之click事件[添加及删除数据]
    【七】jquery之属性attr、 removeAttr、prop[全选全不选及反选]
    【六】jquery之HTML代码/文本/值[下拉列表框、多选框、单选框的选中]
    【五】jquery之事件(focus事件与blur事件)[提示语的出现及消失时机]
    小白懂算法之基数排序
    mysql_sql199语法介绍
    Python基本编程快速入门
  • 原文地址:https://www.cnblogs.com/StarbucksBoy/p/14520513.html
Copyright © 2020-2023  润新知