• Dijkstra最短路径算法


    引入:

    Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

    代码:

    package Dijkstra;
    
    public class Node {
        private char id;
        private boolean isInTree;
        
        public Node(char id) {
            this.setId(id);
            setInTree(false);
        }
    
        public char getId() {
            return id;
        }
    
        public void setId(char id) {
            this.id = id;
        }
    
        public boolean isInTree() {
            return isInTree;
        }
    
        public void setInTree(boolean isInTree) {
            this.isInTree = isInTree;
        }
    }
    package Dijkstra;
    
    public class DistPare {
        private int parentNode;
        private int distance;
        public DistPare(int parentNode, int distance) {
            this.setParentNode(parentNode);
            this.distance = distance;
        }
    
        public int getParentNode() {
            return parentNode;
        }
    
        public void setParentNode(int parentNode) {
            this.parentNode = parentNode;
        }
        
        public int getDistance() {
            return distance;
        }
        
        public void setDistance(int distance) {
            this.distance = distance;
        }
    
    }
    package Dijkstra;
    
    public class Graph {
        private final int MAXNUM = 20;
        private final int MAXINT = 999999;
        private int nodeNum;       //number of the nodes in Graph
        private int treeNum;       //number of the nodes in tree
        private int adjMatrix[][]; //distance between two nodes
        private Node nodeList[];   //all nodes 
        private DistPare sPath[];  //shortest path between parent node and i  
        private int currentNode;
        private int currentDist;
    
        public Graph(){
            adjMatrix = new int[MAXNUM][MAXNUM];
            nodeList = new Node[MAXNUM];
            sPath = new DistPare[MAXNUM];
            nodeNum = 0;
            treeNum = 0;
            for(int i=0; i<MAXNUM; i++)
                 for(int j=0; j<MAXNUM; j++)
                      adjMatrix[i][j] = MAXINT;
        }
        
        public void addVertex(char id) {
            nodeList[nodeNum++] = new Node(id);
        }
        
        //directed graph
        public void addEdge(int start, int end, int weight) {
            adjMatrix[start][end] = weight;
        }
        
        public void dijkstra() {
            int sourceNode = 0;
            nodeList[sourceNode].setInTree(true);
            treeNum++;
            for(int i = 0; i < nodeNum; i++) {
                int weight = adjMatrix[sourceNode][i];
                sPath[i] = new DistPare(sourceNode, weight);
            }        
            while(treeNum < nodeNum) {
                int minNode = getMin();
                int minDist = sPath[minNode].getDistance();            
                if(minDist == MAXINT) {
                    System.out.println("The node can't be reached!");
               }
               else {
                    currentNode = minNode;
                    currentDist = minDist;
               }
               nodeList[currentNode].setInTree(true);
               treeNum++;
               adjustPath();
            }
            displayPath();
        }
        
        private void adjustPath() {
            // TODO Auto-generated method stub
            int num = 1;
            while(num < nodeNum) {
                 if(nodeList[num].isInTree()) {
                      num ++;
                      continue;
                 }
                 int currentToFringe = adjMatrix[currentNode][num];
                 int startToFringe = currentDist + currentToFringe;
                 int sPathDist = sPath[num].getDistance();
                 if(startToFringe<sPathDist) {
                      sPath[num].setParentNode(currentNode);
                      sPath[num].setDistance(startToFringe);;
                 }
                 num ++;
            }
        }
    
        private void displayPath() {
            // TODO Auto-generated method stub
            for(int i=0; i<nodeNum; i++) {
                System.out.print(nodeList[i].getId() + "=");
                if(sPath[i].getDistance() == MAXINT)
                     System.out.print("infinity");
                else
                     System.out.print(sPath[i].getDistance());
                char parent = nodeList[sPath[i].getParentNode()].getId();
                System.out.print("(" + parent + ") ");
           }
           System.out.println(" ");
        }
    
        /**
         * get the minimum DistPare
         * @return
         */
        private int getMin() {
            int minDist = MAXINT;
            int indexMin = 0;
            for(int j=0; j<nodeNum; j++) {
                 if(!nodeList[j].isInTree() && sPath[j].getDistance()<minDist) {
                      minDist = sPath[j].getDistance();
                      indexMin = j;
                 }
            }
            return indexMin;
        }
        
    }
    package Dijkstra;
    
    public class DijkstraTest {
        public static void main(String[] args) {
            Graph theGraph = new Graph();
            theGraph.addVertex('A');//0
            theGraph.addVertex('B');//1
            theGraph.addVertex('C');//2
            theGraph.addVertex('D');//3
            theGraph.addVertex('E');//4
    
            theGraph.addEdge(0, 1, 50);//AB 50
            theGraph.addEdge(0, 3, 80);//AD 80
            theGraph.addEdge(1, 2, 60);//BC 60
            theGraph.addEdge(1, 3, 90);//BD 90
            theGraph.addEdge(2, 4, 40);//CE 40
            theGraph.addEdge(3, 2, 20);//DC 20
            theGraph.addEdge(3, 4, 70);//DE 70
            theGraph.addEdge(4, 1, 50);//EB 50
           
            System.out.println("Dijkstra: ");
            theGraph.dijkstra();
        }
    }
  • 相关阅读:
    帆软报表实现全选全不选的功能
    knowledge_others
    skills_kafka
    skills_operation
    problems_others
    skills_windows
    c语言标识符
    快速排序法
    字符串处理scanf("%d%*c",&n);
    Byte.parseByte(String s,int radix)的解释
  • 原文地址:https://www.cnblogs.com/SherryIsMe/p/3480151.html
Copyright © 2020-2023  润新知