• HDU4609 3-idiots


    传送门


    最近比赛遇到了要用FFT的题,就趁机加强一下。

    一句话题意:在(n)个数中随便拿出三个数,问能组成三角形的概率。((1 leqslant n leqslant 10^ 5, 1 leqslant a_i leqslant10 ^ 5)


    看到(a_i)的限制,就能想到开一个桶(num[i])表示大小为(i)的数的个数。

    那么(f = num ^ 2)(f(i))就表示拿两个数,组成大小为(i)的数的方案数。但这里面有不合法的和重复的,所以要将(f(a_i+a_i))(1),以及将所有(f(i))除以(2),因为(a_x+a_y)(a_y+a_x)是同一种选法。

    上述的(f(i))直接用FFT即可计算,接下来考虑怎么组成三角形。


    我们可以枚举长边。
    那么对于每一个长边(a_i),可以和(sumlimits_{j>a_i} f(j))组成三角形,但这样算会多。

    一是可能会有一个比(a_i)长的边,一个比(a_i)短的边,那么方案数就要减去((i-1)*(n-i)).
    二是可能一个刚好也选(a_i)(注意,是选(a_i)本身,而选和(a_i)相同的数是合法的,而且两个短边不可能同时选到(a_i),因为这种情况再刚求完(f)的时候已经去掉了),另一个随便选,因此要再减去(n-1).
    最后一种就是选了两个都比(a_i)大的数,再减去(C_{n - i}^2).


    总的来说这题难点不在于卷积,而是后面组合数的推导,要不重不漏的考虑到所有情况。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<queue>
    #include<assert.h>
    #include<ctime>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    #define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 3e5 + 5;
    const db PI = acos(-1);
    In ll read()
    {
    	ll ans = 0;
    	char ch = getchar(), las = ' ';
    	while(!isdigit(ch)) las = ch, ch = getchar();
    	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    	if(las == '-') ans = -ans;
    	return ans;
    }
    In void write(ll x)
    {
    	if(x < 0) x = -x, putchar('-');
    	if(x >= 10) write(x / 10);
    	putchar(x % 10 + '0');
    }
    
    int n, a[maxn];
    
    int len = 1, lim = 0, rev[maxn];
    struct Comp
    {
    	db x, y;
    	In Comp operator + (const Comp& oth)const {return (Comp){x + oth.x, y + oth.y};}
    	In Comp operator - (const Comp& oth)const {return (Comp){x - oth.x, y - oth.y};}
    	In Comp operator * (const Comp& oth)const {return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x};}
    	friend In void swap(Comp &a, Comp& b) {swap(a.x, b.x), swap(a.y, b.y);}
    }A[maxn];
    In void fft(Comp* a, int flg)
    {
    	for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]);
    	for(int i = 1; i < len; i <<= 1)
    	{
    		Comp omg = (Comp){cos(PI / i), sin(PI / i) * flg};
    		for(int j = 0; j < len; j += (i << 1))
    		{
    			Comp o = (Comp){1, 0};
    			for(int k = 0; k < i; ++k, o = o * omg)
    			{
    				Comp tp1 = a[k + j], tp2 = o * a[k + j + i];
    				a[k + j] = tp1 + tp2, a[k + j + i] = tp1 - tp2;
    			}
    		}
    	}
    }
    
    ll num[maxn], sum[maxn];
    In ll solve()
    {
    	sort(a + 1, a + n + 1);
    	for(int i = 1; i <= n; ++i) num[a[i]]++;
    	int N = a[n] + a[n];
    	while(len <= N) len <<= 1, ++lim;
    	for(int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
    	for(int i = 0; i <= a[n]; ++i) A[i] = (Comp){num[i], 0};
    	for(int i = a[n] + 1; i < len; ++i) A[i] = (Comp){0, 0};
    	fft(A, 1);
    	for(int i = 0; i < len; ++i) A[i] = A[i] * A[i];
    	fft(A, -1);
    	for(int i = 0; i <= N; ++i) num[i] = A[i].x / len + 0.5;
    	for(int i = 1; i <= n; ++i) num[a[i] + a[i]]--;
    	for(int i = 1; i <= N; ++i) num[i] /= 2, sum[i] = sum[i - 1] + num[i];
    	ll ret = -1LL * n * (n - 1);
    	for(int i = 1; i <= n; ++i)
    	{
    		ret += sum[N] - sum[a[i]];
    		ret -= 1LL * (i - 1) * (n - i);
    		ret -= (1LL * (n - i) * (n - i - 1) >> 1);
    	}
    	return ret;
    }
    
    In void init()
    {
    	Mem(num, 0);
    	len = 1, lim = 0;
    }
    
    int main()
    {
    	int T = read();
    	while(T--)
    	{
    		init();
    		n = read();
    		for(int i = 1; i <= n; ++i) a[i] = read();
    		printf("%.7lf
    ", 1.0 * solve() / (n - 2) / (n - 1) / n * 6);
    	}
    	return 0;
    }
    
  • 相关阅读:
    JS-15 (class)
    JS-14 (解构)
    AI CycleGAN
    AI GAN
    AI StarGAN
    AI VGG
    硬件 PCIe总线
    工具 docker
    MySql开启慢速查询日志
    AI StyleGAN
  • 原文地址:https://www.cnblogs.com/mrclr/p/15073151.html
Copyright © 2020-2023  润新知