• POJ 3126 Prime Path【从一个素数变为另一个素数的最少步数/BFS】


    Prime Path
    Time Limit: 1000MS Memory Limit: 65536K
    Total Submissions: 26475 Accepted: 14555
    Description

    The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
    — It is a matter of security to change such things every now and then, to keep the enemy in the dark.
    — But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
    — I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
    — No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
    — I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
    — Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

    Now, the minister of finance, who had been eavesdropping, intervened.
    — No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
    — Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
    — In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
    1033
    1733
    3733
    3739
    3779
    8779
    8179
    The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
    Input

    One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
    Output

    One line for each case, either with a number stating the minimal cost or containing the word Impossible.
    Sample Input

    3
    1033 8179
    1373 8017
    1033 1033
    Sample Output

    6
    7
    0
    Source

    Northwestern Europe 2006

    【题意】:给你两个素数,s和e,要求在最少次数从s转变到e,而且中间的数字也得是素数,并且变化前后相邻的两个数只有一位不同
    【分析】:是一道在素数集合上的搜索题目,并且一定是四位数的素数。题目要求所经过的路径最短,自然是BFS。关键是BFS构造的问题,有一个很简单的方法,就是把BFS想成一棵树,每个节点表示一个状态,这个节点的子节点则表示由该状态可到达的状态,对于一个四位数,比如1033,它的千位可以从1-9取值,百位和十位可以从0-9取值,而个位只能取奇数位,因为个位为偶数的数肯定不是素数,然后就是让所有可以到达的状态进队列,并且给他们标记,防止下次再次进入,至于判断素数,可以在O(1)内完成,所以整个程序的效率是比较高的。
    最后如果弹出的数就是想要到达的数,输出步数
    Tips:一般这种要求步数的BFS都是需要使用结构体,每一个节点记录自己的步数
    【代码】:

    #include<cstdio>
    #include<string>
    #include<cstdlib>
    #include<cmath>
    #include<iostream>
    #include<cstring>
    #include<set>
    #include<queue>
    #include<algorithm>
    #include<vector>
    #include<map>
    #include<cctype>
    #include<stack>
    #include<sstream>
    #include<list>
    #include<assert.h>
    #include<bitset>
    #include<numeric>
    #define debug() puts("++++")
    #define gcd(a,b) __gcd(a,b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a,b,sizeof(a))
    #define sz size()
    #define be begin()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    #define all 1,n,1
    #define rep(i,n,x) for(int i=(x); i<(n); i++)
    #define in freopen("in.in","r",stdin)
    #define out freopen("out.out","w",stdout)
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int,int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e18;
    const int maxn = 1e3 + 20;
    const int maxm = 1e6 + 10;
    const int N = 1e4+10;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int dx[] = {-1,1,0,0,1,1,-1,-1};
    const int dy[] = {0,0,1,-1,1,-1,1,-1};
    int dir[][3]={ {0,0,1},{0,0,-1},{1,0,0},{-1,0,0},{0,1,0},{0,-1,0} };
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    
    struct node
    {
        int p[4],step; //數組代表4個數位的取值
    }st,ed;
    
    int vis[15000];
    int t,n,s,e;
    int a,b,c,d;
    
    bool prime( int x )
    {
        for(int i=2; i<=sqrt(x); i++)
            if(x%i==0)
                return false;
        return true;
    }
    
    int cal(int *a)
    {
        return a[0]*1000 + a[1]*100 + a[2]*10 + a[3];
    }
    
    void bfs()
    {
        memset(vis,false,sizeof(vis));
        queue<node>q;
        while(!q.empty()) q.pop();
    
        st.p[0]=s/1000; st.p[1]=s/100%10; st.p[2]=s/10%10; st.p[3]=s%10;
        st.step=0;
        q.push(st);
        vis[cal(st.p)] = 1;
    
        while(!q.empty())
        {
            st = q.front();
            q.pop();
            if(cal(st.p)==e)
            {
                printf("%d
    ",st.step);
                return ;
            }
            for(int i=0;i<4;i++)//枚舉數位
            {
    
                for(int j=0; j<10; j++) //枚舉數位上值
                {
                    ed=st;//
                    if(i==0 && j==0) continue; //首位不能为0
                    ed.p[i]=j; //给某位赋值
                    if(!vis[cal(ed.p)] && prime(cal(ed.p)))
                    {
                        vis[cal(ed.p)] = 1;
                        ed.step = st.step + 1;
                        q.push(ed);
                    }
                }
    
            }
        }
       printf("Impossible
    ");
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&s,&e);
            bfs();
        }
    }
    /*
    3
    1033 8179
    1373 8017
    1033 1033
    
    6
    7
    0
    */
    
    
  • 相关阅读:
    Linux 学习笔记1
    Openstack中的LoadBalancer(负载均衡)功能使用实例
    分析事务与锁3
    MemoryStream
    JBPM4学习之路2:流程部署
    在MongoDB中一起使用$or和sort()
    使用avalon msui绑定实现基于组件的开发
    深度剖析Byteart Retail案例:应用程序的配置
    最年轻的系统分析员的考试心得
    linux学习体会,献给初学者
  • 原文地址:https://www.cnblogs.com/Roni-i/p/9280850.html
Copyright © 2020-2023  润新知