• BZOJ1396识别子串(后缀自动机)


    题目链接

    BZOJ

    解析

    后缀自动机+线段树

    若一个子串可识别,那么它的(right)集合大小一定为(1)

    对于一个(right)大小为(1)的节点:

    1. 它的(right)仅包含(maxlen)

    2. ([1,minlen])的每一个位置(x)产生(maxlen - x + 1)的贡献,因为(str[x..maxlen])只在(maxlen)处出现,是一个可识别子串

    3. ([minlen - 1, maxlen])的每个位置(x)产生(minlen)的贡献,因为(str[x..maxlen])必定在其它位置出现,不是可识别子串,包含该位置的最短可识别子串为(str[maxlen - minlen + 1..maxlen])

    两种贡献分别建线段树统计每个位置的最小值即可

    代码

    P.S.字符串长度先处理出来,否则像我开始一样T得飞起。。。。

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <vector>
    #define MAXN 100005
    
    typedef long long LL;
    struct SuffixAutomaton {
    	struct Node {
    		Node *next[26], *link;
    		int maxlen, once;
    		void friend cpy(Node *a, const Node *b) {
    			a->maxlen = b->maxlen, a->once = b->once, a->link = b->link;
    			for (int i = 0; i < 26; ++i) a->next[i] = b->next[i];
    		}
    	} * root, *last, *node[MAXN << 1];
    	int cnt;
    	SuffixAutomaton() { last = root = new Node(); }
    	void build(char *);
    	Node *add(char);
    	void work();
    } sam;
    struct SegmentTree {
    	int tree[MAXN << 4], upd[MAXN << 4];
    	SegmentTree() { memset(tree, 0x3f, sizeof tree); memset(upd, 0x3f, sizeof upd); }
    	void push_down(int);
    	void update(int, int, int, int, int, int);
    	int query(int, int, int, int);
    } tree1, tree2;
    char string[MAXN];
    int N;
    
    int main() {
    	std::ios::sync_with_stdio(false);
    	std::cin >> (string + 1);
    	N = strlen(string + 1);
    	sam.build(string);
    	sam.work();
    	for (int i = 1; i <= N; ++i)
    		std::cout << std::min(tree1.query(1, 1, MAXN, i) - i, tree2.query(1, 1, MAXN, i)) << std::endl;
    	
    	return 0;
    }
    void SuffixAutomaton::build(char *str) {
    	for (int i = 1; i <= N; ++i) last = add(str[i]);
    }
    SuffixAutomaton::Node *SuffixAutomaton::add(char ch) {
    	int c = ch - 'a';
    	Node *np = new Node(), *p = last;
    	node[++cnt] = np;
    	np->maxlen = p->maxlen + 1, np->once = 1;
    	while (p && !p->next[c]) p->next[c] = np, p = p->link;
    	if (!p) np->link = root;
    	else {
    		Node *q = p->next[c];
    		if (p->maxlen + 1 == q->maxlen) np->link = q;
    		else {
    			Node *nq = new Node();
    			node[++cnt] = nq;
    			cpy(nq, q);
    			nq->maxlen = p->maxlen + 1;
    			q->link = np->link = nq;
    			while (p && p->next[c] == q) p->next[c] = nq, p = p->link;
    		}
    	}
    	return np;
    }
    void SuffixAutomaton::work() {
    	for (int i = 1; i <= cnt; ++i)
    		node[i]->link->once = 0;
    	for (int i = 1; i <= cnt; ++i)
    		if (node[i]->once) {
    			SuffixAutomaton::Node *p = node[i];
    			tree1.update(1, 1, MAXN, 1, p->maxlen - p->link->maxlen, p->maxlen + 1);
    			tree2.update(1, 1, MAXN, p->maxlen - p->link->maxlen, p->maxlen, p->link->maxlen + 1);
    		}
    }
    void SegmentTree::push_down(int id) {
    	if (upd[id] ^ 0x3f3f3f3f) {
    		upd[id << 1] = std::min(upd[id << 1], upd[id]);
    		upd[id << 1 | 1] = std::min(upd[id << 1 | 1], upd[id]);
    		tree[id << 1] = std::min(tree[id << 1], upd[id]);
    		tree[id << 1 | 1] = std::min(tree[id << 1 | 1], upd[id]);
    		upd[id] = 0x3f3f3f3f;
    	}
    }
    void SegmentTree::update(int id, int L, int R, int l, int r, int v) {
    	if (L >= l && R <= r) tree[id] = std::min(tree[id], v), upd[id] = std::min(upd[id], v);
    	else {
    		int mid = (L + R) >> 1;
    		if (l <= mid) update(id << 1, L, mid, l, r, v);
    		if (r > mid) update(id << 1 | 1, mid + 1, R, l, r, v);
    	}
    }
    int SegmentTree::query(int id, int L, int R, int p) {
    	if (L == R) return tree[id];
    	push_down(id);
    	int mid = (L + R) >> 1;
    	if (p <= mid) return query(id << 1, L, mid, p);
    	else return query(id << 1 | 1, mid + 1, R, p);
    }
    //Rhein_E
    
  • 相关阅读:
    大道至简第四章读后感
    进度条08
    大道至简第五章读后感
    加密算法
    程序从命令行接收多个数字,求和之后输出结果。
    用JAVA制作简单登录窗口
    进度条07
    冲刺07
    冲刺06
    冲刺05
  • 原文地址:https://www.cnblogs.com/Rhein-E/p/10447303.html
Copyright © 2020-2023  润新知