ZR#955 折纸
解法:
可以发现折纸之后被折到上面的部分实际上是没有用的,因为他和下面对应位置一定是一样的,而影响答案的只有每个位置的颜色和最底层的坐标范围。因此,我们只需要考虑最底层即可,即我们可以把折纸等效为裁纸,每次去掉较小的那一部分。
用哈希维护每一列和每一行的极大回文子串,记录一下行与列的最大值相乘即可。
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
const int N = 2e6 + 50;
char s[N],tt[N];
string p[N];
int HL[N],WL[N],m,n;
int HR[N],WR[N],t[N],f[N];
int manacher(int *p, char *ss, int Len) {
int len = 0; s[0] = '(';
for(int i = 1 ; i <= Len ; ++ i) {
s[++ len] = '#';
s[++ len] = ss[i];
}
s[++ len] = '#', s[++ len] = ')';
int mx = 0, id = 0;
for(int i = 1 ; i < len ; ++ i) {
if(i < mx) p[i] = min(mx - i, p[2 * id - i]);
else p[i] = 1;
while(s[i + p[i]] == s[i - p[i]]) ++ p[i];
if(i + p[i] > mx) mx = i + p[i], id = i;
}
return len;
}
int main() {
scanf("%d%d",&n,&m);
for(int i = 1 ; i < n ; i++)
HL[i] = HR[i] = 1;
for(int i = 1 ; i < m ; i++)
WL[i] = WR[i] = 1;
for(int i = 1 ; i <= n ; i++)
cin >> p[i];
for(int i = 1 ; i <= n ; i++) {
int len = m;
for(int j = 1 ; j <= len ; j++)
tt[j] = p[i][j - 1];
int Len = manacher(t, tt, m) - 3;
int mx = 1;
for(int j = 3 ; j <= Len ; j += 2) {
if(j - t[j] + 1 <= mx) mx = j;
else WL[j >> 1] = 0;
}
int mn = Len + 2;
for(int j = Len ; j >= 3 ; j -= 2) {
if(j + t[j] - 1 >= mn) mn = j;
else WR[j >> 1] = 0;
}
}
LL ansW = 0;
int sum = 0;
WL[0] = 1, WR[m] = 1;
for(int i = 0 ; i <= m ; i++) sum += WR[i];
for(int i = 0 ; i <= m ; i++) {
if(WR[i]) -- sum;
if(WL[i]) ansW += sum;
}
swap(n, m);
for(int i = 1 ; i <= n ; i++) {
int len = m;
for(int j = 1 ; j <= len ; j++)
tt[j] = p[j][i - 1];
int Len = manacher(t, tt, m) - 3;
int mx = 1;
for(int j = 3 ; j <= Len ; j += 2) {
if(j - t[j] + 1 <= mx) mx = j;
else HL[j >> 1] = 0;
}
int mn = Len + 2;
for(int j = Len ; j >= 3 ; j -= 2) {
if(j + t[j] - 1 >= mn) mn = j;
else HR[j >> 1] = 0;
}
}
LL ansH = 0;
sum = 0;
HL[0] = 1, HR[m] = 1;
for(int i = 0 ; i <= m ; i++) sum += HR[i];
for(int i = 0 ; i <= m ; i++) {
if(HR[i]) -- sum;
if(HL[i]) ansH += sum;
}
printf("%lld
", ansW * ansH);
//system("pause");
return 0;
}