正题
题目链接:https://ac.nowcoder.com/acm/contest/11161/E
题目大意
给出\(n\)个数字的一个序列,\(m\)个操作。
- 给出\(l,r,k\),求一个最大的\(x\)使得\(\sum_{i=l}^rmax\{a_i-x,0\}\geq k\)
- 单点修改
解题思路
带修的比较麻烦,用带修莫队的话需要平衡一下时间复杂度,可以用分块来做。
这样修改是\(O(1)\)的,但是询问的话朴素的想法是二分然后统计,这个\(O(m\sqrt n\log n)\)显然是过不了的。
但是如果改为一个个块从后往前跳确定答案在哪个块,然后在块里枚举就好了。
时间复杂度\(O(mn^{\frac{2}{3}}+m\sqrt n\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const ll N=1e5+10;
struct node{
ll l,r,k,id,t;
}q[N];
ll n,m,T,Q,a[N],L[N],R[N],pos[N],p[N],c[N];
ll qnt,mnt,s[N],cnt[N],v[N],ans[N];
bool cmp(node x,node y){
if(x.l/T!=y.l/T)return x.l<y.l;
if(x.r/T!=y.r/T)return x.r<y.r;
return x.t<y.t;
}
void Add(ll x,ll f){
s[pos[x]]+=x*f;
cnt[pos[x]]+=f;
v[x]+=f;return;
}
ll Query(ll k){
if(!k)return 100000;
ll pt,sum=0,ct=0;
for(pt=Q;pt>=1;pt--){
sum+=s[pt];ct+=cnt[pt];
if(sum-ct*R[pt-1]>=k)
{sum-=s[pt];ct-=cnt[pt];break;}
}
if(!pt)return -1;
for(ll i=R[pt];i>=L[pt];i--){
sum+=v[i]*i;ct+=v[i];
if(sum-ct*(i-1)>=k)
return i-1;
}
return -1;
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++)scanf("%lld",&a[i]);
T=pow(n*m,1.0/3.0);Q=316;
for(ll i=1;i<=Q;i++)
L[i]=R[i-1]+1,R[i]=i*Q;
++Q;L[Q]=R[Q-1]+1;R[Q]=1e5;
for(ll i=1;i<=Q;i++)
for(ll j=L[i];j<=R[i];j++)pos[j]=i;
for(ll i=1;i<=m;i++){
ll op;scanf("%lld",&op);
if(op==0){
++qnt;q[qnt].id=qnt;q[qnt].t=mnt;
scanf("%lld%lld%lld",&q[qnt].l,&q[qnt].r,&q[qnt].k);
}
else ++mnt,scanf("%lld%lld",&p[mnt],&c[mnt]);
}
sort(q+1,q+1+qnt,cmp);
ll l=1,r=0,t=0;
for(ll i=1;i<=qnt;i++){
while(l<q[i].l)Add(a[l],-1),l++;
while(l>q[i].l)l--,Add(a[l],1);
while(r<q[i].r)r++,Add(a[r],1);
while(r>q[i].r)Add(a[r],-1),r--;
while(t<q[i].t){
t++;
if(l<=p[t]&&p[t]<=r)
Add(a[p[t]],-1),Add(c[t],1);
swap(a[p[t]],c[t]);
}
while(t>q[i].t){
swap(a[p[t]],c[t]);
if(l<=p[t]&&p[t]<=r)
Add(a[p[t]],1),Add(c[t],-1);
t--;
}
ans[q[i].id]=Query(q[i].k);
}
for(ll i=1;i<=qnt;i++)
printf("%lld\n",ans[i]);
return 0;
}