• 6.10第十四次作业


    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构

     

     代码:

    digits = load_digits()

    X_data = digits.data.astype(np.float32)
    Y_data = digits.target.astype(np.float32).reshape(-1, 1)

    scaler = MinMaxScaler()
    # x:归一化MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("MinMaxScaler_trans_X_data:",X_data)

    # y:独热编码OneHotEncoder()或to_categorical
    Y = OneHotEncoder().fit_transform(Y_data).todense()
    print("one-hot_Y:",Y)

    # 转换为图片的格式
    X = X_data.reshape(-1, 8, 8, 1)
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
    print('X_train.shape:', X_train.shape)
    print('X_test.shape:', X_test.shape)
    print('y_train.shape:',y_train.shape)
    print('y_test.shape:', y_test.shape)

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。

    代码:

    # 设计卷积神经网络结构
    model = Sequential()
    # 先制定卷积核的大小
    ks = (3, 3)
    input_shape = X_train.shape[1:]

    # +一层卷积
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
    # +池化层1
    model.add(MaxPool2D(pool_size=(2, 2)))

    # +二层卷积
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
    # +池化层2
    model.add(MaxPool2D(pool_size=(2, 2)))

    # +三层卷积
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
    # +四层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
    # +池化层3
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # +平坦层
    model.add(Flatten())
    # +全连接层
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))

    model.add(Dense(10, activation='softmax'))
    model.summary()

    4.模型训练

    准确率:

    损失率:

     

     代码:

    # 训练模型
    import matplotlib.pyplot as plt
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
    score = model.evaluate(X_test,y_test)
    score
    # 定义训练参数可视化
    def show_train_history(train_history, train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train History')
    plt.ylabel('train')
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
    # 准确率
    show_train_history(train_history, 'accuracy', 'val_accuracy')
    # 损失率
    show_train_history(train_history, 'loss', 'val_loss')

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap

  • 相关阅读:
    CMDB资产管理系统开发【day25】:需求分析
    python常用运维脚本实例
    我的Pycharm,我做主
    为什么你总是“半途而废”- 李笑来
    函数和常用模块【day06】:模块特殊变量(十四)
    使用Python的turtle(海龟)模块画图
    第一章:数据结构和算法
    网络编程基础【day10】:IO多路复用
    函数和常用模块【day04】:内置函数分类总结(十一)
    Python基础【day01】:PyChram使用技巧总结(六)
  • 原文地址:https://www.cnblogs.com/Qiomo/p/13084610.html
Copyright © 2020-2023  润新知