• 【洛谷 P3805】 【模板】manacher算法


    题目链接
    manacher算法:在线性时间内求一个字符串中所有/最长回文串的算法。
    先来考虑一下暴力的算法,枚举每个中点,向两边扩展,时间复杂度(O(n^2))
    来分析下此算法的缺点。
    1、因为回文串有奇偶之分,所以要分类讨论,(abba)的对称轴不在字符上,分类讨论就会有点麻烦。
    为此,(manacher)算法的解决方案是在每个字符之间插入一个相同的字符,比如说(#)
    (ababa->#a#b#a#b#a#),这样就不用考虑回文串的奇偶性了。
    2、效率低。为什么低?每个位置会被重复遍历。和(KMP)算法类似,(manacher)也是利用已有信息减少重复无用操作。
    比如说(abacaba),这是一个回文串,但两边的(aba)也都是一个回文串,我们在枚举到右边的(b)时就已经能确定已这个(b)为中心的回文串的回文半径至少为(2),然后直接从这个长度开始拓展就好了。设(hw[i])表示以(a[i])为回文中心的回文半径长度,(maxright)表示当前已发现的右端点最右的右端点,(mid)表示这个回文串的中心。
    则有如下算法(我觉得看代码比看讲解容易懂些)

    for(int i = 1; i < len; ++i){
       if(i < maxright)
         hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i);    //min左边的参数是这个点的对称点的hw值,右边的是保证这个部分在这个大回文串之内
       else hw[i] = 1;
       while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i];  //拓展
       if(hw[i] + i > maxright){   //更新右端点
         maxright = hw[i] + i;
         mid = i;
       }
    }
    

    该题完整代码

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    const int MAXN = 11000010;
    char b[MAXN], a[MAXN << 1];
    int hw[MAXN << 1], ans, n;
    int main(){
        scanf("%s", b);
        a[0] = a[1] = '#';
        int len = strlen(b);
        for(int i = 0; i < len; ++i)
           a[(i << 1) + 2] = b[i], a[(i << 1) + 3] = '#';
        int maxright = 0, mid; len = (len << 1) + 3;
        for(int i = 1; i < len; ++i){
           if(i < maxright)
             hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i);
           else hw[i] = 1;
           while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i];
           if(hw[i] + i > maxright){
             maxright = hw[i] + i;
             mid = i;
           }
           ans = max(ans, hw[i] - 1);
        }
        printf("%d
    ", ans);
        return 0;
    }
    
  • 相关阅读:
    RabbitMQ 消息可靠性
    SpringBoot2.X+SpringAMQP 整合 RabbitMQ
    《红宝书》 |Array数组介绍及用法
    《红宝书》 |单例内置对象 |Global和Math
    js封装 |随机获取指定范围内的整数
    《红宝书》 |原始包装类型
    《红宝书》 |什么是对象
    js封装 |时间对象相关方法
    兼容 |ios移动端的时间对象
    《红宝书》 |基本引用类型-正则表达式RegExp
  • 原文地址:https://www.cnblogs.com/Qihoo360/p/9742880.html
Copyright © 2020-2023  润新知