问题 D: [Sdoi2011]消防
时间限制: 1 Sec 内存限制: 512 MB
提交: 12 解决: 6
[提交][状态][讨论版]
题目描述
某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000)。
这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的行业是消防业。由于政府对国民的热情忍无可忍(大量的消防经费开销)可是却又无可奈何(总统竞选的国民支持率),所以只能想尽方法提高消防能力。
现在这个国家的经费足以在一条边长度和不超过s的路径(两端都是城市)上建立消防枢纽,为了尽量提高枢纽的利用率,要求其他所有城市到这条路径的距离的最大值最小。
你受命监管这个项目,你当然需要知道应该把枢纽建立在什么位置上。
输入
输入包含n行:
第1行,两个正整数n和s,中间用一个空格隔开。其中n为城市的个数,s为路径长度的上界。设结点编号以此为1,2,……,n。
从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。
输出
输出包含一个非负整数,即所有城市到选择的路径的最大值,当然这个最大值必须是所有方案中最小的。
样例输入
【样例输入1】
5 2
1 2 5
2 3 2
2 4 4
2 5 3
【样例输入2】
8 6
1 3 2
2 3 2
3 4 6
4 5 3
4 6 4
4 7 2
7 8 3
样例输出
【样例输出1】
5
【样例输出2】
5
提示
对于100%的数据,n<=300000,边长小等于1000。
很容易证得,路径一定在树的直径上。如果路径拐到了另一条链上,明显不最优。所以求出树的直径(两遍广搜),再一遍广搜就可以搞出其它点到直径的最大距离(只要把直径上的边权标为0),把它作为二分的下界,上届就是树的直径了。二分时,只不过要舍弃掉直径左右两部分(长度<=mid)即可,最后判断剩下的长度<=s即可。
现在只要证一下,只要保证直径上舍弃的长度>=其它点到直径的距离即可。其实这个没啥好证的。。想想就明白了。
#pragma GCC optimize("O3")
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define N 300005
#define ll long long
using namespace std;
int read()
{
int sum=0,f=1;char x=getchar();
while(x<'0'||x>'9'){if(x=='-')f=-1;x=getchar();}
while(x>='0'&&x<='9'){sum=(sum<<1)+(sum<<3)+x-'0';x=getchar();}
return sum*f;
}
queue<int> q;
struct road{int v,next,l;}lu[N*2];
int n,s,e,rt1,rt2,top,adj[N],dis[N],vis[N],mark[N],from[N],zhan[N];
void add(int u,int v,int l){lu[++e]=(road){v,adj[u],l};adj[u]=e;}
void bfs(int S)
{
memset(dis,-1,sizeof(dis));
q.push(S);dis[S]=0;
while(!q.empty())
{
int x=q.front();q.pop();vis[x]=0;
for(int i=adj[x];i;i=lu[i].next)
{
int to=lu[i].v;
if(dis[to]==-1)
{
from[to]=x;
if(mark[to])dis[to]=dis[x];
else dis[to]=dis[x]+lu[i].l;
q.push(to);
}
}
}
}
bool check(int x)
{
int l=1,r=top;
while(zhan[1]-zhan[l+1]<=x&&l<=top)l++;
while(zhan[r-1]<=x&&r>=1)r--;
return zhan[l]-zhan[r]<=s;
}
int main()
{
n=read();s=read();
int x,y,z;
for(int i=1;i<n;i++)
{
x=read();y=read();z=read();
add(x,y,z);add(y,x,z);
}
bfs(1);for(int i=1;i<=n;i++)if(dis[i]>dis[rt1])rt1=i;
bfs(rt1);for(int i=1;i<=n;i++)if(dis[i]>dis[rt2])rt2=i;
int D=dis[rt2];zhan[++top]=dis[rt2];mark[rt2]=1;
while(rt2!=rt1)
{
zhan[++top]=dis[from[rt2]];rt2=from[rt2];
mark[rt2]=1;
}
bfs(rt2);
int l=0,r=D;for(int i=1;i<=n;i++)l=max(l,dis[i]);
if(s<D)
{
while(l<=r)
{
int mid=l+r>>1;
if(check(mid))r=mid-1;
else l=mid+1;
}
}
printf("%d
",l);
}