题意:
求A^B的所有约数(即因子)之和,并对其取模 9901再输出。
思路:
A可以表示为A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
那么A的所有因子之和可以表示成
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
然后可以转化成等比公式,在求除法同余的时候求逆元
对于 a/b mod m可以转化成 (a mod bm)/m /*参考ACdreamers
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; typedef long double ld; const ld eps=1e-10; const int inf = 0x3f3f3f; const int maxn = 1e6+10; bool check[maxn]; int prime[maxn]; ll tot; void get_prime() { tot = 0; memset(check,false,sizeof(check)); check[1] = true; for(int i = 2; i<= maxn; i++) { if(!check[i]) { prime[tot++] = i; for(int j = i+i; j <= maxn; j+=i) check[j] = true; } } } ll multi(ll a,ll b,ll mod) { ll ans = 0; a%=mod; while(b) { if(b & 1) { ans = (ans+a) % mod; b -- ; } a = (a+a) % mod; b >>= 1; } return ans; } ll pow_mod(ll a,ll n,ll p) { ll ans = 1; a %= p; while(n) { if(n & 1) { ans = multi(ans,a,p); n--; } a = multi(a,a,p); n >>= 1; } return ans; } ll sum(ll x,ll b) { ll t = 1; ll tnum = 0; ll tmp = x; for(int i = 0; i < tot; i++) { if(tmp % prime[i] == 0) { tnum = 0; while(tmp % prime[i] == 0) { tmp /= prime[i]; tnum ++; } ll M = (prime[i]-1)*9901; t *= (pow_mod(prime[i],tnum*b+1,M)-1+M)/(prime[i]-1); t %= 9901; } } if(tmp > 1) { ll M = (tmp-1)*9901; t *= (pow_mod(tmp,tnum*b+1,M)-1+M)/(tmp-1); t %= 9901; } return t%9901; } int main() { ll a,b; get_prime(); while(scanf("%I64d%I64d",&a,&b) != EOF) { printf("%I64d ",sum(a,b)%9901); } return 0; }