K-wolf Number
Problem Description
Alice thinks an integer x is a K-wolf number, if every K adjacent digits in decimal representation of x is pairwised different.
Given (L,R,K), please count how many K-wolf numbers in range of [L,R].
Given (L,R,K), please count how many K-wolf numbers in range of [L,R].
Input
The input contains multiple test cases. There are about 10 test cases.
Each test case contains three integers L, R and K.
1≤L≤R≤1e18
2≤K≤5
Each test case contains three integers L, R and K.
1≤L≤R≤1e18
2≤K≤5
Output
For each test case output a line contains an integer.
Sample Input
1 1 2
20 100 5
Sample Output
1
72
题意:
询问 [L,R] 间有多少个数 满足 连续k位数都不相同
题解:
数位DP
传递 前 k-1 分别是什么
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") const int N = 1e5+5, M = 6e4+5, mod = 1e9+7, inf = 1e9+1000; typedef long long ll; ll L,R; ll k,d[N],K; ll dp[20][12][12][12][12]; bool vis[20][12][12][12][12]; ll dfs(int dep,int f,int now[],int bo) { int x = now[0], y = now[1], z = now[2], e = now[3]; if(dep < 0) return 1; if(f&&vis[dep][x][y][z][e]) return dp[dep][x][y][z][e]; if(f) { vis[dep][x][y][z][e] = true; ll& ret = dp[dep][x][y][z][e]; for(int i = 0; i <= 9; ++i) { int OK = 1; for(int j = 0; j < k-1; ++j) if(now[j] == i) {OK = 0; break;} if(OK == 0) continue; if(!bo && !i) ret += dfs(dep-1,f,now,bo); else { int tmpnow[6]; for(int j = 0; j <= 4; ++j) tmpnow[j] = now[j+1]; tmpnow[5] = 10; tmpnow[k-2] = i; ret += dfs(dep-1,f,tmpnow,bo||i); } } return ret; }else { ll ret = 0; for(int i = 0; i <= d[dep]; ++i) { int OK = 1; for(int j = 0; j < k-1; ++j) if(now[j] == i) {OK = 0; break;} if(OK == 0) continue; if(!bo && !i) ret += dfs(dep-1,i<d[dep],now,bo); else { int tmpnow[6]; for(int j = 0; j <= 4; ++j) tmpnow[j] = now[j+1]; tmpnow[5] = 10; tmpnow[k-2] = i; ret += dfs(dep-1,i<d[dep],tmpnow,bo||i); } } return ret; } } ll solve(ll x) { //if(x < 0) return 0; memset(vis,false,sizeof(vis)); memset(dp,0,sizeof(dp)); int len = 0; while(x) { d[len++] = x % 10; x /= 10; } int now[6]; for(int i = 0; i <= 5; ++i) now[i] = 10; return dfs(len-1,0,now,0); } int main() { while(~scanf("%I64d%I64d%I64d",&L,&R,&k)) { //K = pre[k]; printf("%I64d ",solve(R) - solve(L-1)); } /* ll x; while(~scanf("%I64d%d",&x,&k)) { K = pre[k]; printf("%I64d ",solve(x)); } */ }