• Rearrangement inequality


    摘抄自:  https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof

    In mathematics, the rearrangement inequality[1] states that

    x_{n}y_{1}+cdots +x_{1}y_{n}leq x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}leq x_{1}y_{1}+cdots +x_{n}y_{n}

    for every choice of real numbers

    x_{1}leq cdots leq x_{n}quad {	ext{and}}quad y_{1}leq cdots leq y_{n}

    and every permutation

    {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}}

    of x1, . . ., xn. If the numbers are different, meaning that

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

    Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

    Proof[edit]

    The lower bound follows by applying the upper bound to

    -x_{n}leq cdots leq -x_{1}.

    Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

    x_{{sigma (1)}}y_{1}+cdots +x_{{sigma (n)}}y_{n}

    is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

    We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now

    j<kRightarrow y_{j}leq y_{k}qquad {	ext{and}}qquad j<sigma (j)Rightarrow x_{j}leq x_{{sigma (j)}}.quad (1)

    Therefore,

    0leq (x_{{sigma (j)}}-x_{j})(y_{k}-y_{j}).quad (2)

    Expanding this product and rearranging gives

    x_{{sigma (j)}}y_{j}+x_{j}y_{k}leq x_{j}y_{j}+x_{{sigma (j)}}y_{k}\,,quad (3)

    hence the permutation

    which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

    If

    x_{1}<cdots <x_{n}quad {	ext{and}}quad y_{1}<cdots <y_{n},

    then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

    Generalization[edit]

    A Generalization of the Rearrangement inequality states that for all real numbers {displaystyle x_{1}leq cdots leq x_{n}} and any choice of functions {displaystyle f_{i}:[x_{1},x_{n}]
ightarrow mathbb {R} ,i=1,2,...,n} such that

    {displaystyle f'_{1}(x)leq f'_{2}(x)leq ...leq f'_{n}(x)quad forall xin [x_{1},x_{n}]}

    the inequality

    {displaystyle sum _{i=1}^{n}f_{i}(x_{n-i+1})leq sum _{i=1}^{n}f_{i}(x_{sigma (i)})leq sum _{i=1}^{n}f_{i}(x_{i})}

    holds for every permutation {displaystyle x_{sigma (1)},dots ,x_{sigma (n)}} of {displaystyle x_{1},dots ,x_{n}}[2].

     

  • 相关阅读:
    C语言学习趣事_19_C参考手册连接
    2_Windows下利用批处理文件获取命令行命令帮助信息
    C语言学习趣事_FILE_TYPE
    清华大学出版社版_Windows程序设计_方敏_不足_3
    Windows程序设计零基础自学_14_Windows文件和目录操作
    3_Windows下利用批处理文件_去除C源代码中指示行号的前导数字
    随想_7_Windows_7_Visual_Studio_2008_问题
    C语言小算法_1_数值转换
    C语言学习趣事_20_Assert_Setjmp
    C语言学习趣事_20_关于数组名与指针的讨论
  • 原文地址:https://www.cnblogs.com/Paul-Guderian/p/10022298.html
Copyright © 2020-2023  润新知